Ïðèìåðû
èç êíèãè À.Ï.Ñîëîäîâà, Â.Ô.Î÷êîâà «Äèôôåðåíöèàëüíûå
ìîäåëè»
Examples from the book A.Solodov,
V.Ochkov «Differential
Models»
Mathcad 2001 or Higher
Ãëàâà 1 – Chapter 1 Differential mathematical models
Fig_1_15_Traffic_w_Phi_Vwave.mcd
Fig_1_16,17_Traffic_Wave_BW.mcd
Fig_1_18_Traffic_Wave_3D_Vconst.mcd
Fig_1_2_NewVariant_1.mcd
Fig_1_2_NewVariant_2.mcd
Fig_1_20,21,22_FuelEl.mcd
Fig_1_3,4,5_Drop.mcd
Fig_1_7,8,9,10,11.mcd
Ãëàâà 2 – Chapter 2 Integrable differential equations
Fig_2_1,2_Linear_DE.mcd
Fig_2_3_DE_reduction.mcd
Ãëàâà 3 – Chapter 3 Dynamic model of the system with heat generating
Fig_3_10_11_roots.mcd
Fig_3_12_13_Odesolve.mcd
Fig_3_14_Odesolve.mcd (Mathcad 11)
Fig_3_15_Odesolve.mcd (Mathcad 11)
Fig_3_2,3_RHSideOfDE.mcd
Fig_3_5_Equil_State_Set.mcd
Fig_3_6_Bifurcation_Set.mcd
Fig_3_7_engl.mcd
Ãëàâà 4 – Chapter 4 The stiff differential equations
Fig_4_11,12_StiffDE_Kinetic.mcd
Fig_4_13_StiffDE_Expl_Impl.mcd
Fig_4_2,3,4,5,6_StiffDE_rkfixed_Arial.mcd
Fig_4_2,3,4,5,6_StiffDE_rkfixed_probe.mcd
Fig_4_7,8.mcd
Fig_4_9,10.mcd
Ãëàâà 5 – Chapter 5 Heat transfer near to the critical point at ñross tube flow
Fig_5_3,4,5_HTinCritPoint_3_ZylStrom.mcd
Fig_5_6_Analysis_CritPoint_1.mcd
Fig_5_6_Analysis_CritPoint.mcd
Fig_5_7_NumExamplForCrPoint.mcd
Fig_5_8,9,10_HTInCritPoint_4_Mini&ODE_TE.mcd
Ãëàâà 6 – Chapter 6 Falkner – Skan Equation. Hydrodynamic Friction and
heat transfer in the boundary layer
Fig_6_13,14,15_ForcedConv_T_distr_2.mcd
Fig_6_13,14.mcd
Fig_6_15.mcd
Fig_6_16_Exampl_Prvar.mcd
Fig_6_16_variant.mcd
Fig_6_17_ForcedConv_HT_Low.mcd
Fig_6_18_FalknerSkan_Odesolve.mcd
Fig_6_2,3,4,5_FlknrSkn_forDOC_End_1.mcd
Fig_6_6,7,8_FlknrSkn_forDOC_End_2.mcd
Fig_6_9,10,11,12_FlknrSkn_forDOC_End_2.mcd
Fig_6_Eqs.mcd
Ãëàâà 7 – Chapter 7 Rayleigh’s Equation. Hydrodynamical instability
Fig_7_11_Real_Value.mcd
Fig_7_3_Euler_DEsolver.mcd
Fig_7_4-9,11_Rayleigh_Instab.mcd
Fig_7_6_Euler.mcd
Fig_7_for_ppt_U_distr.mcd
Ãëàâà 8 – Chapter 8 Kinematic waves of concentration in
ion-exchange filter
Fig_8_11.mcd
Fig_8_12_FilterWave_Publ.mcd
Fig_8_2-5_Lengmur_Mody.mcd
Fig_8_6_B_E_T.mcd
Fig_8_7_Filter_qRATc.mcd
Fig_8_8,9,10.mcd
Ãëàâà 9 – Chapter 9 Kinematic shock waves
Fig_9_11,12_Filter_Lengm_McCorm_Impuls_2.mcd
Fig_9_13,14_Traffic_McCorm_Exper.mcd
Fig_9_15,16_Traffic_McCorm_congestion_1.mcd
Fig_9_17_Traffic_McCorm_resolution.mcd
Fig_9_19_Shock.mcd
Fig_9_20,21,22_BdlFlow_McCorm_congestion_NewDesign.mcd
Fig_9_20,21,22_BubbleFlow.mcd
Fig_9_23,24_BubbleFlow_impulse.mcd
Fig_9_3_Vector_shift.mcd
Fig_9_4_McCorm.mcd
Fig_9_5-10_Filter_Lengm_McCorm.mcd
Ãëàâà 10 – Chapter 10 Numerical modelling of the CPU-board
temperature field
Fig_10_11-14_ORB_1D_EQ_BVAL_Arial.MCD
Fig_10_15_PLATE_PIPE_2.MCD
Fig_10_5_Coefs_2D_Stat.mcd
Fig_10_6-9_BW.MCD
Ãëàâà 11 – Chapter 11 Temperature waves
Fig_11_4,5,6_SysTRD_2.mcd
Fig_11_4,5,6_SysTRD_2_exper.mcd
Fig_11_4,5,6_SysTRD_3_as-text.mcd
Fig_11_4,5,6_SysTRD_4_exper.mcd
Fig_11_7,8_HTCnd_1D_Pulse_Brass.mcd
Fig_11_7,8_HTCnd_1D_Pulse_Brass_publ.mcd
Apendix & Others
Fig_Protocol_RELAX_VS_PLATE.MCD
Fuel_Element.mcd
Fuel_Element_damage.mcd
HTCnd_1D_Plate_Instat.mcd
HTCnd_1D_qV_UO2.mcd
ORB_1D_EQ_BVAL_1.MCD
pdesolve_Pulse_Brass.mcd
pdesolve_Pulse_Robbin.mcd
Plate_Eq_Coef.mcd
PLATE_PIPE_expe.MCD
SysTRD_1.mcd
Traffic__9_17_cover.mcd
Traffic_McCorm.mcd
Eqs_11_3_ Coefs_publ.mcd
Eqs_11_until 6_
Coefs_publ.mcd
Eqs_7_2,3,4.mcd
eqs5_4-9_HTInCritPoint_1_Eqs_TE.mcd