Ïðèìåðû èç êíèãè À.Ï.Ñîëîäîâà, Â.Ô.Î÷êîâà «Äèôôåðåíöèàëüíûå ìîäåëè»

Examples from the book A.Solodov, V.Ochkov «Differential Models»

Mathcad 2001 or Higher

Ãëàâà 1 – Chapter 1 Differential mathematical models

Fig_1_15_Traffic_w_Phi_Vwave.mcd

Fig_1_16,17_Traffic_Wave_BW.mcd

Fig_1_18_Traffic_Wave_3D_Vconst.mcd

Fig_1_2_NewVariant_1.mcd

Fig_1_2_NewVariant_2.mcd

Fig_1_20,21,22_FuelEl.mcd

Fig_1_3,4,5_Drop.mcd

Fig_1_7,8,9,10,11.mcd

Ãëàâà 2 – Chapter 2 Integrable differential equations

Fig_2_1,2_Linear_DE.mcd

Fig_2_3_DE_reduction.mcd

Ãëàâà 3 – Chapter 3 Dynamic model of the system with heat generating

Fig_3_10_11_roots.mcd

Fig_3_12_13_Odesolve.mcd

Fig_3_14_Odesolve.mcd (Mathcad 11)

Fig_3_15_Odesolve.mcd (Mathcad 11)

Fig_3_2,3_RHSideOfDE.mcd

Fig_3_5_Equil_State_Set.mcd

Fig_3_6_Bifurcation_Set.mcd

Fig_3_7_engl.mcd

Ãëàâà 4 – Chapter 4 The stiff differential equations

Fig_4_11,12_StiffDE_Kinetic.mcd

Fig_4_13_StiffDE_Expl_Impl.mcd

Fig_4_2,3,4,5,6_StiffDE_rkfixed_Arial.mcd

Fig_4_2,3,4,5,6_StiffDE_rkfixed_probe.mcd

Fig_4_7,8.mcd

Fig_4_9,10.mcd

Ãëàâà 5 – Chapter 5 Heat transfer near to the critical point at ñross tube flow

Fig_5_3,4,5_HTinCritPoint_3_ZylStrom.mcd

Fig_5_6_Analysis_CritPoint_1.mcd

Fig_5_6_Analysis_CritPoint.mcd

Fig_5_7_NumExamplForCrPoint.mcd

Fig_5_8,9,10_HTInCritPoint_4_Mini&ODE_TE.mcd

Ãëàâà 6 – Chapter 6 FalknerSkan Equation. Hydrodynamic Friction and heat transfer in the boundary layer

Fig_6_13,14,15_ForcedConv_T_distr_2.mcd

Fig_6_13,14.mcd

Fig_6_15.mcd

Fig_6_16_Exampl_Prvar.mcd

Fig_6_16_variant.mcd

Fig_6_17_ForcedConv_HT_Low.mcd

Fig_6_18_FalknerSkan_Odesolve.mcd

Fig_6_2,3,4,5_FlknrSkn_forDOC_End_1.mcd

Fig_6_6,7,8_FlknrSkn_forDOC_End_2.mcd

Fig_6_9,10,11,12_FlknrSkn_forDOC_End_2.mcd

Fig_6_Eqs.mcd

Ãëàâà 7 – Chapter 7 Rayleigh’s Equation. Hydrodynamical instability

Fig_7_11_Real_Value.mcd

Fig_7_3_Euler_DEsolver.mcd

Fig_7_4-9,11_Rayleigh_Instab.mcd

Fig_7_6_Euler.mcd

Fig_7_for_ppt_U_distr.mcd

Ãëàâà 8 – Chapter 8      Kinematic waves of concentration in ion-exchange filter

Fig_8_11.mcd

Fig_8_12_FilterWave_Publ.mcd

Fig_8_2-5_Lengmur_Mody.mcd

Fig_8_6_B_E_T.mcd

Fig_8_7_Filter_qRATc.mcd

Fig_8_8,9,10.mcd

Ãëàâà 9 – Chapter 9 Kinematic shock waves

Fig_9_11,12_Filter_Lengm_McCorm_Impuls_2.mcd

Fig_9_13,14_Traffic_McCorm_Exper.mcd

Fig_9_15,16_Traffic_McCorm_congestion_1.mcd

Fig_9_17_Traffic_McCorm_resolution.mcd

Fig_9_19_Shock.mcd

Fig_9_20,21,22_BdlFlow_McCorm_congestion_NewDesign.mcd

Fig_9_20,21,22_BubbleFlow.mcd

Fig_9_23,24_BubbleFlow_impulse.mcd

Fig_9_3_Vector_shift.mcd

Fig_9_4_McCorm.mcd

Fig_9_5-10_Filter_Lengm_McCorm.mcd

Ãëàâà 10 – Chapter 10 Numerical modelling of the CPU-board temperature field

Fig_10_11-14_ORB_1D_EQ_BVAL_Arial.MCD

Fig_10_15_PLATE_PIPE_2.MCD

Fig_10_5_Coefs_2D_Stat.mcd

Fig_10_6-9_BW.MCD

Ãëàâà 11 – Chapter 11 Temperature waves

Fig_11_4,5,6_SysTRD_2.mcd

Fig_11_4,5,6_SysTRD_2_exper.mcd

Fig_11_4,5,6_SysTRD_3_as-text.mcd

Fig_11_4,5,6_SysTRD_4_exper.mcd

Fig_11_7,8_HTCnd_1D_Pulse_Brass.mcd

Fig_11_7,8_HTCnd_1D_Pulse_Brass_publ.mcd

 

Apendix & Others

Fig_Protocol_RELAX_VS_PLATE.MCD

Fuel_Element.mcd

Fuel_Element_damage.mcd

HTCnd_1D_Plate_Instat.mcd

HTCnd_1D_qV_UO2.mcd

ORB_1D_EQ_BVAL_1.MCD

pdesolve_Pulse_Brass.mcd

pdesolve_Pulse_Robbin.mcd

Plate_Eq_Coef.mcd

PLATE_PIPE_expe.MCD

SysTRD_1.mcd

Traffic__9_17_cover.mcd

Traffic_McCorm.mcd

Eqs_11_3_ Coefs_publ.mcd

Eqs_11_until 6_ Coefs_publ.mcd

Eqs_7_2,3,4.mcd

eqs5_4-9_HTInCritPoint_1_Eqs_TE.mcd