УДК 546.294:536.76

DOI 10.34984/SCFTP.2024.19.1.002

АДАПТАЦИЯ (*h*, *T*)-ДАННЫХ ДЛЯ РАСЧЕТА НЕКОТОРЫХ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ SF₆ НА КРИВОЙ НАСЫЩЕНИЯ

Е.Е. Устюжанин — Национальный исследовательский университет «МЭИ», Москва, Россия. ORCID: 0000-0001-8919-9797. Эл. почта: evgust@gmail.com (*для переписки*) **В.Ф. Очков** — Национальный исследовательский университет «МЭИ», Москва, Россия. Эл. почта: ochkov@twt.mpei.ac.ru

С.В. Рыков — Университет ИТМО, Санкт-Петербург, Россия. ORCID: 0000-0003-0428-9625. Эл. почта: togg1@yandex.ru

И.В. Кудрявцева — Университет ИТМО, Санкт-Петербург, Россия. ORCID: 0000-0002-7718-9660. Эл. почта: neva0175@mail.ru

В.А. Рыков — Университет ИТМО, Санкт-Петербург, Россия. ORCID: 0000-0003-4694-6590. Эл. почта: rykov-vladimir@rambler.ru

© 2024 г. Поступила в редакцию 11.10.2023 г. Прошла рецензирование 30.10.23. Принята к публикации 30.10.23.

Представлена информации о поведении плотности SF₆ на бинодали в асимптотической окрестности критической точки $3 \cdot 10^{-6} < \tau < 2 \cdot 10^{-4}$, где $\tau = (T_c - T)/T_c$ относительная температура, *T_c* — критическая температура. Плотности жидкой (р₁) и паровой (р_a) фаз рассчитаны на основании экспериментальных данных Garrabos с соавт. (2018) о высоте h, на которой находится мениск, разделяющий две фазы образца в горизонтальной ячейке диаметром *d* при температуре *T* в условиях земной гравитации. В качестве второго компонента метода рассматривается параметр порядка $f_s(\tau)$ в аналитической форме, которая соответствует масштабной теории (МТ) критических явлений и опирается на (ρ_l , ρ_g , *T*)-данные Funke с соавт. (1998) для SF₆ в интервале $10^{-3} < \tau < 0,3$. Сформулирован ряд задач, включая построение зависимостей $\rho_l(\tau)$ и $\rho_e(\tau)$, отвечающих МТ и коррелирующих с (h, T)-данными при $10^{-6} < \tau < 10^{-3}$. Исследована взаимосвязь между (*h*, *T*)-данными и функциями $f_s(\tau)$ и $f_d(\tau)$ (f_d — средний или прямолинейный диаметр). Рассчитаны зависимости ρ_l и ρ_g от температуры в интервале $10^{-6} < \tau < 10^{-3}$. Построены зависимости $\rho_l(\tau)$ и $\rho_g(\tau)$, отвечающие МТ и удовлетворительно работающие в интервале $10^{-6} < \tau < 10^{-3}$. Ключевые слова: линия насыщения, плотность, шестифтористая сера, параметр порядка, прямолинейный диаметр.

введение

Цель данного исследования заключается в получении информации о поведении плотности SF₆ на бинодали в асимптотической окрестности критической точки $3 \cdot 10^{-6} < \tau < 2 \cdot 10^{-4}$, где $\tau = (T_c - T)/T_c$ — относительная температура, T_c — критическая температура. Для ее достижения разработан методический подход, позволяющий рассчитать плотности жидкой (ρ_l) и паровой (ρ_g) фаз на основании экспериментальных данных Garrabos с соавт. [1] о высоте *h*, на которой находится мениск, разделяющий две фазы образца в горизонтальной ячейке. В эксперименте реализованы следующие условия:

а) двухфазный образец SF₆ заполняет горизонтальную цилиндрическую ячейку, имеющую диаметр d (рис. 1);

Рис. 1. Сечение ячейки с двухфазным образцом SF₆:

1 — мениск; *2* — высота *h*; *3* — положение плоскости S_{v} ; 4 — высота h_{t} ; V_{g} и V_{l} верхняя и нижняя части ячейки соответственно

б) температура Т ячейки поддерживается постоянной в заданных состояниях вблизи критической температуры Т_с и измеряется платиновым термодатчиком;

в) положение (высота h) мениска измеряется оптической системой;

г) зависимость h(T) является известной функцией, заданной в приводимой ниже форме;

д) эксперимент проводится в условиях земной гравитации (g = 9,8 м/с²).

В основе обсуждаемого подхода лежит функция h(T), исследованная для SF₆ в [1]. Из массива данных (ρ_l, ρ_g, T), которые обсуждаются в [1-9], выделены экспериментальные результаты, полученные в [3] и [6] (рис. 2). Они сопоставляются с (h, T)-данными [1].

Для установления связи между (ρ_l, ρ_g, T)данными и (h, T)-данными помещаем вир-

туальную горизонтальную плоскость S_v вдоль оси ячейки [1] (рис. 1). Уровень этой плоскости принимаем за $h_0 = 0$ (позиция 3, рис. 1). В ячейке выделяем верхнюю V_g и нижнюю V_l части, которые имеют объемы V/2 (V – объем ячейки) при $h = h_0 = 0$.

В опытах [1] на ряде изотерм $T < T_c$ измеряют значения h. Во время эксперимента мениск может находиться выше плоскости S_{v} ; тогда выполняется неравенство h > 0 (позиция 1, рис. 2). Численные результаты эксперимента [1] могут быть выражены в виде функции y = 2h/d с аргументами T и $\Delta T = T - T_c$; эта функция представлена в табл. 1 в виде некоторых определенных из эксперимента значений y_{exp} . Отметим, что в [1] (ρ_l, ρ_g, T)-данные не определялись. В [1] приведены:

— критические параметры SF₆ ($T_c = 318,723 \pm 0,001$ K, $\rho_c = 742,0 \pm 1,5$ кг/м³;

 $- T_{CX} = 318,707270$ К — расчетная температура, отмеченная на рис. 2 точкой с; относится к линии насыщения и отвечает линии постоянной плотности

Рис. 2. Бинодаль SF₆ в координатах (ρ , *T*):

I — средняя плотность D_m по данным [8]; *2* — средняя плотность D_m по данным [6]; *3* — изохора $\rho = \rho_c$, $4 - (\rho_l, T)$ -данные, $5 - (\rho_g, T)$ -данные, 6 -изохора $\rho = \rho_{cell} > \rho_c$

Таблица 1

экспериментальные ($\mu_l, \mu_g, 1$)-данные и результаты расчетов								
318,583	318,678	318,707	318,709					
$3,988 \cdot 10^{-4}$	$1,0072 \cdot 10^{-4}$	$9,727 \cdot 10^{-6}$	$3,452 \cdot 10^{-6}$					
646,79	682,70	716,37	724,76					
837,84	800,99	768,31	760,21					
646,565*	682,596*	715,406*	723,337*					
837,667*	800,016*	767,939*	759,978*					
0,1288	0,0798	0,0350	0,0239					
0,00702	0,0180	0,0251	0,0301					
0,00710	0,00346	0,02697	0,04754					
$9,140 \cdot 10^{-4}$	$2,757 \cdot 10^{-4}$	9,443 · 10 ⁻⁴	11,36 · 10 ⁻⁴					
6,346 · 10 ⁻⁴	$2,166 \cdot 10^{-4}$	3,619 · 10 ⁻⁵	$1,604 \cdot 10^{-5}$					
	318,583 3,988 · 10 ⁻⁴ 646,79 837,84 646,565* 837,667* 0,1288 0,00702 0,00710 9,140 · 10 ⁻⁴ 6,346 · 10 ⁻⁴	Scheepingen vertrammale $(p_j, p_g, 1)^2$ Administ 318,583 318,678 3,988 · 10 ⁻⁴ 1,0072 · 10 ⁻⁴ 646,79 682,70 837,84 800,99 646,565* 682,596* 837,667* 800,016* 0,1288 0,0798 0,00702 0,0180 0,00710 0,00346 9,140 · 10 ⁻⁴ 2,757 · 10 ⁻⁴ 6,346 · 10 ⁻⁴ 2,166 · 10 ⁻⁴	Scheepingen and a possibility of the possibility of t					

* Значения плотности ρ_l и ρ_g рассчитаны по формулам (10), (11), (13) (см. ниже).

 $\rho = \rho_{cell} = 743,5 \text{ кг/м}^3 > \rho_c$, где $\rho_{cell} = M/V$ — величина, определяемая массой образца в ячейке M и ее объемом V[1];

— температура T_{cross} , которая отвечает неравенству 317,823 К > T_{cross} > 318,123 К и отмечена точкой d на рис. 2.

В литературе имеются (ρ_l , ρ_g , T)-данные на фиксированных высотах h_t в ячейке, выполненной в виде горизонтального цилиндра и содержащей двухфазный образец гексафторбензола C₆F₆ [10] и перфтороктана CF₃(CF₂)₆CF₃ [11]. В этих работах выявлен гравитационный эффект в виде зависимости $\rho(h_t)$ для плотности вещества на фиксированной высоте h_t , которая отсчитывается от нижней точки внутренней поверхности цилиндра, как показано на рис. 1 (позиция 4). При этом температура является фиксированной.

Рассмотрим результаты работы [10] более подробно. В работе представлены:

а) экспериментальные (ρ_l, ρ_g, T)-данные в диапазоне температур 298,79— 516,7 К при $g = 9,8 \text{ м/c}^2$;

б) данные о давлении насыщения Р;

в) значения T_c и ρ_c .

Эксперимент [10] показывает, что наличие гравитационного компонента $P_g \approx \rho gh$ приводит к тому, что вдали от $T_c = 516,62$ К при $\tau > 2 \cdot 10^{-4}$ на распределении $\rho(h)$ присутствует скачок ($\rho_l - \rho_g$), тогда как в критической области ($0 < \tau < 2 \cdot 10^{-4}$) эксперимент [10] выявил не скачок, а непрерывную зависимость $\rho(h)$ на изотермах 515,98, 516,28 и 516,57 К, то есть при указанных температурах в образце отсутствует граница в виде мениска между жидкой и газовой фазами.

В отличие от [10], в экспериментах [1] мениск наблюдается в области $(3 \cdot 10^{-6} < \tau < 2 \cdot 10^{-4})$, то есть для SF₆ на изотермах, отвечающих условию $\Delta T \ge 1 \times \times 10^{-3}$ K, отсутствует связанная с гравитацией непрерывная зависимость $\rho(h)$. При этом экспериментальные (h, T)-данные [1] получены в области значений τ , где отсутствуют экспериментальные (ρ_l, ρ_s, T) -данные.

Оценка положения мениска в ячейке

Для решения сформулированной в работе задачи проведен представленный ниже анализ.

На бинодали SF₆ (рис. 2) присутствуют критическая точка и две изохоры: — $\rho = \rho_c$ (линия 3) или критическая изохора, реализуемая в ячейке [10]; — $\rho = \rho_{cell} > \rho_c$ (линия 6).

Рассмотрим два состояния образца на изохоре $\rho = \rho_{cell}$:

а) состояние 0: $T_0 = T_{cross}$ при g = 9,8 м/с², верхняя и нижняя части имеют равные объемы $V_g = V_l = V/2$ (точка d, рис. 2), h = 0 (уровень 3, рис. 1);

б) состояние 1: после нагрева температура образца отвечает неравенству $T_{CX} > T_1 > T_{cross}$, где T_{CX} — температура, которая относится к точке *c* (рис. 2), лежащей на линии насыщения; T_{cross} — температура, которая относится к точке *d* (рис. 2); в точке *c* плотность отвечает равенству ρ_l (T_{CX}) = ρ_{cell} .

Сформулируем вопрос: на какой высоте h (позиция 3, рис. 1) будет находиться мениск образца, помещенного в ячейку [1], в изохорическом процессе перехода от состояния 0 к состоянию 1?

Для ответа на этот вопрос принимаем, во-первых, что в указанных состояниях образца гравитационный эффект значительно уменьшен; например, в условиях, когда установка размещена на космической лаборатории, гравитационный эффект снижается, так как ускорение является малой величиной ($0 < g < 9.8 \text{ м/c}^2$). Как уже указывалось, в опыте [10] (ρ_l , ρ_g , *T*)-измерения выполняются при $g = 9.8 \text{ м/c}^2$ и гравитационный эффект существенно влияет на полученные результаты.

Во-вторых, рассматриваем некоторые этапы перехода образца из состояния 0 в состояние 1, когда выполняются условия $T_{CX} > T_1 > T_{cross}$ и $\rho = \rho_{cell}$.

На этапе 1 для образца в состоянии 0 введем равенство

$$\rho_{cell} = [\rho_l(T_{cross})V/2 + \rho_g(T_{cross})V/2]V = D_m(T_{cross})$$
 (позиция 6, рис. 2),

где $D_m(T) = [\rho_l(T) + \rho_g(T)]/2$ — средняя плотность, которая равна среднему значению между ортобарическими плотностями (позиция 2, рис. 2). Известна связь между $D_m(T)$ и средним диаметром f_d , который задается как

$$f_d = \left[\rho_l(T) + \rho_g(T) \right] / (2\rho_c(T) - 1),$$

T.e.
$$D_m(T) = \rho_c [1 + f_d(T)].$$

На этапе 2 нагреем образец и переведем из состояния 0 в состояние 1 с температурой T_1 ; при этом выполняются условия $T_{CX} > T_1 > T_{cross}$ и $\rho = \rho_{cell}$. Этому состоянию соответствует точка *c* (рис. 2). В состоянии 1 мениск является смещенным и отвечает линии 2 (рис. 1).

На этапе 3 рассматриваем:

а) баланс массы образца для состояния 1 в виде:

$$V_{g}\rho_{g} + (V - V_{g})\rho_{l} = V\rho_{cell}, \text{ откуда}$$

$$V_{g}/V = (\rho_{cell} - \rho_{l})/(\rho_{g} - \rho_{l}); \qquad (1)$$

В ряде работ функцию f_d именуют как прямолинейный диаметр; например, см. [8] и линию 1 (рис. 2).

б) функции от величин, входящих в (1),

$$\Delta \rho_l = \rho_l / \rho_c - 1; \ \Delta \rho_g = 1 - \rho_g / \rho_c; \ \Delta \rho_{cell} = (\rho_{cell} - \rho_c) / \rho_c$$

и отношение V_g/V в форме:

$$V_g/V = \Delta \rho_l / (\Delta \rho_l - \Delta \rho_g) - \Delta \rho_{cell} / (\Delta \rho_l - \Delta \rho_g);$$
⁽²⁾

(в) функции (
$$f_d$$
, f_s) в виде:

$$f_d = (\rho_l + \rho_g)/2\rho_c - 1 = (\Delta\rho_l + \Delta\rho_g)/2, \tag{3}$$

$$f_d = (\rho_l - \rho_g)/2\rho_c - 1 = (\Delta \rho_l - \Delta \rho_g)/2.$$
(4)

На этапе 4 записываем:

(а) $\Delta \rho_{cell}$ для состояния 1 в форме:

$$\Delta \rho_{cell} = \left[\rho_l(T_{cross}) + \rho_g(T_{cross}) \right] / 2 = f_d(T_{cross}); \tag{5}$$

(б) изменение объема газовой фазы в виде:

$$\Delta V_g = V_g - V/2. \tag{6}$$

На этапе 5 представляем ΔV_g как элементарный объем, который имеет малую высоту *h*, и площадь *Ld* и записываем отношение V_g/V в форме

$$\frac{\Delta V_g}{V} = \frac{hLd}{L\frac{\pi d^2}{4}} = \frac{4h}{\pi d}.$$
(7)

На этапе 6 используем формулы (2)—(7) и записываем высоту *h* как малое смещение по отношению к уровню *h* в виде:

$$h = \pi d [f_d(T_{cross})/f_s - ur]/8, \qquad (8)$$

где $ur = f_d/f_s$ — некоторый комплекс, зависящий от температуры.

Таким образом, установлена корреляция между величиной *h*, с одной стороны, и функцией *f_s* и комплексом *ur* — с другой.

В соответствии с целью данного исследования зависимость (8) можно использовать для разработки методического подхода (см. ниже) к расчету (ρ_l, ρ_g, T)-данных для SF₆ с помощью (h, T)-значений, представленных в [1].

На этапе 7 для уточнения формулы (8) учитываем приведенную в [1] величину $f_d(T_{cross}) = \Delta \rho_{cell} = 2 \cdot 10^{-3}$ и значение $x = 6 \cdot 10^{-2}$, представляющее собой поправку на эффективный объем ячейки. Это позволяет записать зависимость $y(\tau)$ в виде

$$y = \frac{\pi}{4} \left(-ur + \frac{0,002}{f_s} \right) (1+x), \tag{9}$$

где y = 2h/d = h/R — относительная высота мениска.

Методика расчета

Для расчета (ρ_l , ρ_g , T)-зависимостей для SF₆ используем уравнение (9) и (h, T)-данные, полученные в эксперименте [1] для температур, указанных в табл. 1. Функция $f_s(T)$, которая входит в (9), является важным компонентом при реализации рассматриваемого подхода.

На первом этапе выбираем форму $f_s(T)$ для SF₆ в виде [2, 12]:

$$f_s = B_{s_0} \tau^{\beta} + B_{s_1} \tau^{\beta+\Delta} + B_{s_2} \tau^{\beta+2\Delta} + B_{s_3} \tau^2 + B_{s_4} \tau^3, \tag{10}$$

где $\beta = 0,347$ — критический показатель SF₆ [2]; $\Delta = 0,5$ — асимптотическая поправка; B_{si} (i = 0—4) — регулируемые коэффициенты, представленные в [2].

Указанная форма $f_s(T)$ отвечает условиям масштабной теории (МТ) критических явлений [5, 13], опирается на (ρ_l, ρ_g, T)-данные [3] для SF₆ в интервале ($0,3 < \tau < 10^{-3}$) и содержит известные значения критических параметров и B_{s_i} (i = 0—4).

На втором этапе для условий эксперимента [1] при некоторой температуре T, которая соответствует интервалу ($10^{-6} < \tau < 10^{-3}$), выбираем значение y, полученное в эксперименте [1], и по уравнению (10) вычисляем соответствующее данной температуре значение f_s . С использованием этих значений и уравнения (9) вычисляем *ur* и f_d .

На заключительном этапе определяем искомые плотности при температуре *T* с использованием соотношений:

$$\rho_l = (f_d + f_s + 1)\rho_c; \ \rho_g = (f_d - f_s + 1)\rho_c.$$
(11)

По этой методике на основании отобранных экспериментальных (y_{exp} , T, i = 1-4) данных [1] для ($10^{-6} < \tau < 10^{-2}$) были рассчитаны величины ρ_l и ρ_g . В табл. 1 приведены некоторые результаты, полученные при расчетах на последовательных этапах реализации предложенной методики:

а) (f_{s_i} , T_i , i = 1-4)-данные, рассчитанные по (10);

б) (ur_i , T_i , i = 1-4)-данные, рассчитанные по (9) с использованием (y_{exp_i} , T_i , i = 1-4);

в) (f_{d_i} , T_i , i = 1-4)-данные, рассчитанные по (9) с использованием (ur_{exp_i} , T_i , i = =1-4);

г) (ρ_{l_i} , ρ_{l_i} , T_i , i = 1-4)-данные, рассчитанные по уравнениям (11) с использованием соответствующих полученных численных данных для $3 \cdot 10^{-6} < \tau < 4 \cdot 10^{-4}$; эти величины не определялись в [1].

Анализ моделей и полученных результатов

Анализ уравнений (8) и (9) совместно с данными табл. 1 и известными моделями $f_d(T)$ показывает, что когда заполнение горизонтальной цилиндрической ячейки соответствует $\rho_{cell} = \rho_c$, формула (8) содержит неопределенность. В этом случае она не может использоваться. При этом в той же степени усложняется поиск формулы для высоты мениска h_l . Подобная задача рассмотрена в [7] при совместном исследовании функции $h_l(T)$ и зависимостей $\rho_l(T)$ и $\rho_g(T)$ для C₆F₆. При ее решении привлекались опытные (ρ_l, ρ_g, T)-данные [10].

В результате получены перечисленные ниже выводы.

1. Применительно к условиям экспериментов [1] выполняются следующие соотношения:

а) если $T \to T_{cross}$, то $h \to 0$, т.к. $ur = f_d (T_{cross})/f_s (T_{cross})$ при T_{cross} ;

б) если $T \to T_{CX}$, то выполняются корреляции $h \to r$ и $\rho_l \to \rho_{cell}$;

в) если $T_{cross} < T < T_{CX}$, то h > 0 в соответствии с экспериментом (рис. 3); в этом случае при росте температуры комплекс *ur* убывает от значения $f_d(T_{cross})/f_s(T_{cross})$ и отвечает условию ur > 0;

г) из полученного неравенства ur > 0 вблизи критической точки $(3 \cdot 10^{-6} < < \tau < 4 \cdot 10^{-4})$ можно заключить, что функция $f_d(T)$ является положительной и средняя плотность $D_m(T)$ отвечает линии 2 (рис. 2);

д) можно принять гипотезу $f_d = D_{d_1} \tau^{2\beta} > 0$; в наших работах [2, 4, 14] также приводятся аргументы, обосновывающие соотношение $f_d > 0$ в критической области.

2. Входящий в (8) комплекс *ur* играет существенную роль в критической области; так, функцию h(T) можно записать в виде:

Рис. 3. Функция *у*(*T*): *1* — расчет по уравнениям (9), (10), (13); *2* — эксперимент

$$h = \pi d \cdot ur [f_d (T_{cross})/f_d(T) - 1]/8.$$

В условиях экспериментов [1] величина *h* изменяется от 0 до 0,15 мм, а комплекс *ur* убывает примерно от $2 \cdot 10^{-3}$ до $2 \cdot 10^{-4}$.

3. В ряде работ, включая [5], для некоторых веществ в критической области рассматривается случай $f_d(T) < 0$. При этом вблизи критической точки должны выполняться неравенства $dD_m/dT < 0$ и $D_m < \rho_c$, т.е. функция $D_m(T)$ должна иметь участок, расположенный ниже критической изохоры. Так, авторы [5] построили функцию:

$$f_d = B_{d_0} \tau^{1-\alpha} + B_{d_1} \tau^{2\beta} + B_{d_2} \tau,$$

где $B_{d_0} > 0$ и $B_{d_1} < 0$ в критической области.

Для этого случая нами представлена функция $D_m(T)$, изображаемая линией 7 на рис. 4, которая соответствует $f_d(T) < 0$.

Отметим, во-первых, что авторы [5] также адаптировали рассматриваемую модель $f_d(T)$ к (ρ_l, ρ_g, T) данным, представленным в [6]. Соответствующая функция $D_m(T)$ совпадает с линией 2 (рис. 2), построенной на основании данных [6]. В этом случае коэффициент B_{d_1} , входящий в лидирующий (вносящий наибольший вклад) компонент этой модели, равен 1,0864. Это значение определяет заметную кривизну функции $D_m(T)$: на рис. 2 можно видеть существенное отклонение линии 2 от линии 1 в критической области.

Во-вторых, в литературе наряду с $f_d(\tau)$ описана линейная зависимость $f_d = B_0 + B_1 \tau$, которая построена на основе данных [6]. Соответствующая ей функция $D_m(T)$ представлена на рис. 2 (линия *1*); можно видеть совпадение линии 2 и линии 1 вдали от критической области.

Рассмотренные выше результаты дают возможность построить модифицированный массив, который включает (ρ_l, ρ_g, T)-данные, полученные в эксперименте [3], и (ρ_l, ρ_g, T)-данные, приведенные в табл. 1. Этот массив охватывает интервал $3 \cdot 10^{-6} < \tau < 0, 3$.

Расчет некоторых свойств SF₆ на кривой насыщения

Чтобы оценить степень согласия расчетных значений, приведенных в табл. 1, с известными экспериментальным (ρ_l , ρ_g , *T*)-данными, рассмотрим модель среднего диаметра [2], которая записывается в форме:

«Сверхкритические Флюиды: Теория и Практика». Том 19. № 1. 2024

(12)

1 — экспериментальные значения, полученные с помощью модифицированного массива; 2 — функция, построенная на основании величин ρ_l и ρ_g , вычисленных по уравнениям (11); 3 — заданная граница $D_m(\tau) + \Delta D$; 4 — изохора $\rho = \rho_c$; 5 — функция $B_{d_0} \tau^{1-\alpha} + B_{d_1} \tau^{2\beta}$ (13); 6 — функция $B_{d_1} \tau^{2\beta}$; 7 — функция $B_{d_0} \tau^{1-\alpha} + B_{d_1} \tau^{2\beta}$ при $B_{d_1} < 0$

$$f_d = B_{d_0} \tau^{1-\alpha} + B_{d_1} \tau^{2\beta} + B_{d_2} \tau^{1-\alpha-\Delta} + B_{d_3} \tau^2 + B_{d_4} \tau^3.$$
(13)

Модель (13) отвечает условиям МТ [5, 12], в том числе содержит лидирующий компонент $B_{d_1}\tau^{2\beta}$. При этом выполняется неравенство $2\beta < 1 - \alpha$, обусловленное МТ. Значения параметров, входящих в выражения (10) и (13), получены в [2] с помощью нелинейного метода наименьших квадратов (НМНК) [4, 14]; при этом в качестве исходных были выбраны (ρ_l, ρ_g, T)-данные [3] для интервала $2 \cdot 10^{-4} < \tau < 0,3$.

Представляет интерес построить модели (11), включающие компоненты (10) и (13), на основе модифицированного (ρ_l, ρ_g, T)-массива и НМНК. В рамках данного подхода было принято рассмотренное выше приближение $f_d = B_{d_1} \tau^{2\beta} > 0$ и вариант $B_{d_0} > 0$. В качестве начального приближения выбираем приведенные в [2] другие параметры моделей (10) и (13). В итоге НМНК позволил определить характеристики $D = (\rho_c, T_c, \alpha, \beta, ...)$ и остальные коэффициенты моделей (10) и (13) (табл. 2). Этот вариант моделей (10), (11) и (13) основан на модифицированном исходном массиве и работает в интервале $3 \cdot 10^{-6} < \tau < 0,3$.

Анализируя качество полученных моделей (11), включающих компоненты (10) и (13), отметим следующее.

Га	бл	иц	а	2

ρ _c , кг/м ³	T_c, \mathbf{K}	α	β	B_s	B_{s_1}	B_{s_2}
741,645	318,7101	0,1112	0,3477	1,95825	0,021714	-0,060572
B_{s_3}	B_{s_4}	B_{d_0}	B_{d_1}	B_{d_2}	B_{d_3}	B_{d_4}
-0,938958	1,211974	0,25941	0,08521	1,02283	-0,84764	0,620608

Параметры моделей (10), (13)

1. Сравнение критических параметров, приведенных в [1] $T_c = 318,723 \pm 0,001$ K, $\rho_c = 742,15$ кг/м³ со значениями, представленными в табл. 2, дает относительные отклонения $\delta T_c = 0,004$ % и $\delta \rho_c = 0,047$ %.

2. В [1] приводится плотность $\rho_{cell} = 743,5 \text{ кг/м}^3$, рассчитанная на основании массы образца и объема ячейки с учетом поправок на его деформацию и балластный объем. Этой величине на рис. 2 соответствует точка *c*, в которой $\rho_{cell} = 1,002\rho_c = \rho_l \text{ и } T = T_{CX}$; при этом выполняются условия $T_{CX} \approx T_c - 0,4 \cdot 10^{-6} \text{ K}$ и $\tau_{CX} = 1,2 \cdot 10^{-9}$.

Наряду с точкой *c*, в которой выполняется условие $\rho_l(c) = 1,002\rho_c$, рассмотрим точку *c**, которая лежит на газовой ветви бинодали и является симметричной точке *c* относительно ρ_c ; т.е. в этом случае $\rho_g(c^*) = 0,998\rho_c =$ = 740,516 кг/м³.

3. Если плотность на бинодали описывается моделями (11), включающими компоненты (10) и (13), то в точке *c* (рис. 2) с использованием значений T_c , ρ_c и τ_{CX} из табл. 2 получаем $\rho_l^* = 742,81$ кг/м³. Аналогично для точки c^* с температурой $T_{CX} = 318,7100996$ К получаем $\rho_g^* = 740,48$ кг/м³. Отклонения величин плотности составляют $\delta \rho_{cell} = 100 \cdot [\rho_{cell}^*(c^*) - \rho_l^*]/\rho_l^* = 0,09\%$ и $\delta \rho_g = 100 \cdot [\rho_g^*(c^*) - \rho_g^*]/\rho_g^* = 0,004\%$. Эти результаты сравнения показывают, что модели (11), включающие компоненты (10) и (13), удовлетворительно согласуются с указанными свойствами, которые приведены в [1] и лежат вблизи T_c .

4. Сравнение расчетных данных о функции y(DT), найденных с помощью (9), (10) и (13), со значениями $y(\Delta T)$, полученными экспериментально, где $\Delta T = T_c - T$, приводится на рис. З в интервале $10^{-6} < t < 10^{-2}$. Оно показывает, что расчетные величины удовлетворительно согласуются с соответствующими экспериментальными. Заметные отклонения выявлены при $0,001 < \Delta T < 0,010$ К (рис. 3), или при $3 \cdot 10^{-6} < \tau < 5 \cdot 10^{-4}$. Это связано с тем, что расчетные значения функции $y(\Delta T)$ резко возрастают при $T \rightarrow T_c$, так как входящий в (9) компонент $0,002/f_s$ стремится к ∞ . Такие расхождения между расчетными и экспериментальными значениями $y(\Delta T)$ вблизи T_c могут быть уменьшены путем варьирования параметра $f_d(T_{cross})$ в пределах погрешности эксперимента.

5. В интервале $3 \cdot 10^{-6} < \tau < 0,3$ средние квадратические отклонения S_l и S_g величин ρ_l и ρ_g , вычисленных по уравнениям (11), от значений, входящих в модифицированный массив, составляют 0,029 % и 0,067 % соответственно. Максимальное локальное отклонение составляет 0,22 % при 318,709 К. При этом экспериментальные (ρ_i, ρ_g, T)-данные [3], включенные в указанный массив, имеют погрешность 0,1 % по оценке авторов [3].

6. Полученные в [6] экспериментальные (ρ_l, ρ_g, T)-данные для SF₆ были использованы в ряде исследований, включая [5], с целью построения скейлинговых моделей $f_s(\tau), f_d(\tau), D_m(\tau)$ и др. В интервале $3 \cdot 10^{-4} < \tau < 0.2$ для указанных данных рассчитано среднее арифметическое отклонение $\delta \rho_M = (\Sigma \delta \rho_i)/N \approx -1\%$, где N — число измерений. Эта погрешность существенно влияет на погрешность функций f_d , D_m и других, которые связаны с (ρ_l, ρ_g, T)-данными [6].

7. На рис. 4 представлены значения $D_m(\tau)$, рассчитанные с использованием (13), а также верхняя граница $D_m(\tau) + \Delta D_m$, где $\Delta D_m = 0,001\rho_c$ — принятый допуск, обусловленный погрешностью данных, входящих в модифицированный массив в критической области. Видно, что полученные из эксперимента значения D_m не выходят за верхнюю границу в интервале $3 \cdot 10^{-6} < \tau < 10^{-3}$. Эти результаты показывают, что в критической области выражение (13) позволяет

заметно уточнить как значения $D_m(\tau)$, приведенные в [5, 8], так и величину коэффициента B_{d_1} , входящего в лидирующий компонент модели [5]. В соответствии с (13) при малых τ зависимость $D_m(\tau)$ можно выразить как

$$D_m(\tau) = \rho_c (1 + B_{d_0} \tau^{1-\alpha} + B_{d_1} \tau^{2\beta})$$

где B_{d_0} и B_{d_1} — коэффициенты, приведенные в табл. 2. Из рис. 4 можно видеть существенную кривизну зависимости $D_m(\tau)$ при $B_{d_1} > 0$.

8. В [17] разработана система взаимосогласованных уравнений (CBУ), которая описывает ряд термодинамических свойств на бинодали SF₆ в диапазоне от температуры тройной точки T_t до T_c . Представляет интерес сравнение результатов расчетов, проведенных по имеющимся в литературе [3, 17] уравнениям, и расчетов, которые сделаны по формулам (11), включающим компоненты (10) и (13). Средний диаметр $f_d^{[17]}$, играющий важную роль в критической области, описывается уравнением:

$$f_d^{[17]} = B_{2\beta} \tau^{2\beta} + B_{1-\alpha} \tau^{1-\alpha} + B_{\tau} \tau + o(\tau),$$
(14)

где *о* — символ Ландау.

В соответствии с рекомендациями [18] приняты следующие значения коэффициентов уравнения (14): $B_{2\beta} = 0,06261481, B_{2\beta}/B_{1-\alpha} = 0,21383431, B_{2\beta}/B_{\tau} = 0,14080154$ [17].

На рис. 5 (см. цв. вкладку) представлены в зависимости от относительной температуры т относительные отклонения плотности, вычисленные по формуле

$$\delta \rho_{l,g} = 100 \cdot \left(\rho_{l,g}^{calc} - \rho_{l,g} \right) / \rho_{l,g}^{calc}, \tag{15}$$

где $\rho_{l,g}$ — значения плотностей, представленные в литературе; $\rho_{l,g}^{calc}$ — соответствующие расчетные значения.

Для построения зависимостей, представленных на рис. 5, использованы величины ρ_l и ρ_g :

– рассчитанные по уравнениям (10), (11) и (13) и приведенные в табл.1;
 – определенные экспериментально Funke с соавт. [3] и рассчитанные со-

гласно [3];

— рассчитанные на основе СВУ [17].

Анализ данных, приведенных на рис. 5, показывает, что в асимптотической окрестности критической точки:

1. Плотности, рассчитанные по уравнениям (10), (11) и (13), хорошо согласуются с экспериментальными значениями (линии 1 и 2) и с рассчитанными на основе СВУ [17] (линии 5 и 6).

2. При $\tau \ge 5 \cdot 10^{-5}$ имеется удовлетворительное соответствие результатов расчетов по уравнениям (10), (11) и (13) и по уравнениям Funke с соавт. [3] (линии 3 и 4); при $\tau < 5 \cdot 10^{-5}$ между этими группами данных имеются существенные расхождения.

3. Результаты расчетов по уравнениям (10), (11) и (13) удовлетворительно согласуются с экспериментальными данными Funke с соавт. [3] (линии 9 и 10).

ЗАКЛЮЧЕНИЕ

Предложен метод определения величин плотностей жидкости и паровой фазы на бинодали SF₆ вблизи критической точки с использованием:

а) экспериментальных данных (h, T), полученных в эксперименте Garrabos с соавт. [1] на двухфазном образце SF₆;

б) параметра порядка $f_s(\tau)$ в аналитической форме, соответствующей масштабной теории критических явлений и опирающейся на прецизионные (ρ_l, ρ_g, T)данные Funke с соавт. [3] в интервале $10^{-3} < \tau < 0.3$;

в) зависимости h(T) в форме (9), которая является важным компонентом в рассматриваемом подходе и исследована в [1].

Установлено, что реализация этого метода позволяет рассчитать температурную зависимость величин ρ_l и ρ_g в малоисследованной как в экспериментальном, так и теоретическом планах области $3 \cdot 10^{-6} < \tau < 2 \cdot 10^{-4}$ вблизи критической точки.

Предложены методики расчета параметра порядка f_s и среднего диаметра f_d на основе нелинейного метода наименьших квадратов и модифицированного массива (ρ_l, ρ_g, T)-данных, полученного в ходе данного исследования и охватывающего интервал $3 \cdot 10^{-6} < \tau < 0,3$. Определены регулируемые параметры (табл. 2), которые используются в этих расчётах.

Исследованы зависимости f_s , f_d и средней плотности D_m от τ . Рассчитаны (ρ_l, ρ_g, T)-данные с применением уравнений (10), (11) и (13), а также параметров (табл. 2) в широком интервале температур.

В результате исследования подтверждена существенная кривизна зависимости $D_m(\tau)$ в асимптотической окрестности критической точки. Показано, что новые расчётные данные о плотности SF₆ удовлетворительно согласуются с надежными экспериментальными результатами [3].

СПИСОК ЛИТЕРАТУРЫ

- 1. Garrabos Y., Lecoutre C., Marre S., Beysens D., Hahn I. // Phys. Rev. E. 2018. Vol. 97. P. 020101(R).
- Vorob'ev V.S., Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Pokholchenko V.A. // J. Phys.: Conf. Ser. 2019. Vol. 1147. P. 012016.
- 3. Funke M., Kleinrahm R., Wagner W. // J. Chem. Thermod. 2001. Vol. 34. P. 735.
- 4. Устюжанин Е.Е., Шишаков В.В., Рыков В.А., Попов П.В., Френкель М.Л. // Вестник МЭИ. 2011. № 6. С. 167.
- 5. Fisher M.E, Orkoulas G. // Phys. Rev. Lett. 2000. Vol. 85. P. 696.
- 6. Weiner J., Langley K.H., Ford Jr. N.C. // Phys. Rev. Lett. 1974. Vol. 32. P. 879.
- 7. Воробьев В.С., Устюжанин Е.Е., Очков В.Ф., Шишаков В.В., Ауне Ту Ра Тун, Рыков В.А., Рыков С.В. // Теплофизика высоких температур. 2020. Т. 58. С. 355.
- 8. Pestak M.W., Goldstein R.E., Chan M.H.W., de Bruyn J.R., Balzarini D.A., Ashcroft N.W. // Phys. Rev. 1987. Vol. 36. P. 599.
- 9. *Рыков С.В., Кудрявцева И.В., Рыков В.А.* // Вестник Международной академии холода. 2018. № 4. С. 28.
- 10. Stankus S.V., Khairulin R.A. // Int. J. Thermophys. 2006. Vol. 27. P. 1110.
- 11. Хайрулин Р.А., Станкус С.В. // Журн. Физ. химии. 2021. Т. 95. С. 529.
- 12. Устюжанин Е.Е., Шишаков В.В., Абдулагатов И.М., Попов П.В., Рыков В.А., Френкель М.Л. // Сверхкритические Флюиды: Теория и Практика. 2012. Т. 7. № 3. С. 30.
- 13. Анисимов М.А., Рабинович В.А., Сычев В.В.Термодинамика критического состояния индивидуальных веществ. М.: Энергоиздат, 1990. 190 с.
- Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Znamensky B.E. // J. Phys.: Conf. Ser. 2018. Vol. 946. P. 012119.
- 15. Zhao W., Wang L., Wu L., Li L., Cai J. // J. Chem. Phys. 2013. Vol. 138. P. 234502.
- 16. Zhou Z., Cai J., Hu Y. // Molecular Physics. 2022. Vol. 120. P. e1987541.
- 17. Кудрявцева И.В., Рыков С.В., Рыков В.А., Устюжанин Е.Е. // Теплофизика высоких температур. 2023. Т. 61. С. 514.
- 18. Wang L., Zhao W., Wu L., Li L., Cai J. // J. Chem. Phys. 2013. Vol. 139. P. 124103.

ADAPTATION OF (h, T)-DATA TO CALCULATE SOME THERMODYNAMIC PROPERTIES OF SF₆ ON SATURATION CURVE

E.E. Ustyuzhanin — National Research University Moscow Power Engineering Institute, Moscow, Russia. ORCID: 0000-0001-8919-9797. E-mail: evgust@gmail.com (*for correspondence*)

V.F. Ochkov — National Research University Moscow Power Engineering Institute, Moscow, Russia. E-mail: ochkov@twt.mpei.ac.ru

S.V. Rykov – ITMO University, St. Petersburg, Russia. ORCID: 0000-0003-0428-9625. E-mail: togg1@yandex.ru

I.V. Kudryavtseva – ITMO University, St. Petersburg, Russia. ORCID: 0000-0002-7718-9660. E-mail: neva0175@mail.ru

V.A. Rykov — ITMO University, St. Petersburg, Russia. ORCID: 0000-0003-4694-6590. E-mail: rykov-vladimir@rambler.ru

Information on the behavior of the SF₆ density on the binodal in the asymptotic vicinity of the critical point $3 \cdot 10^{-4} \tau < 2 \cdot 10^{-4}$, where $\tau = (T_c - T)/T_c$ — relative temperature, T_c critical temperature is presented. The densities of the liquid (ρ_l) and vapor (ρ_g) phases were calculated based on the experimental data of Garrabos et al. (2018) about the height *h* at which the meniscus is located separating the two phases of the sample in a horizontal cell with a diameter *d* at a temperature *T* under conditions of Earth gravity. As the second component of the method, the order parameter $f_s(\tau)$ is considered in analytical form, which corresponds to the scale theory (ST) of critical phenomena and is based on (ρ_b, ρ_g, T)-data from Funke et al. (1998) for SF₆ in the range $10^{-3} < \tau < 0.3$. Several problems are formulated, including the construction of dependencies $\rho_l(\tau)$ and $\rho_g(\tau)$, corresponding to ST and correlating with (h, T)-data for $10^{-6} < \tau < 10^{-3}$. The relationship between (h, T) data and the functions $f_s(\tau)$ and $f_d(\tau)$ (where f_d is the average or rectilinear diameter) is investigated. The dependences of $\rho_l(\tau)$ and $\rho_g(\tau)$ that correspond to ST and working satisfactorily in the range $10^{-3} < t < 0.3$ were constructed.

Key words: saturation line, density, sulfur hexafluoride, order parameter, rectilinear diameter.

REFERENCES

- 1. Garrabos Y., Lecoutre C., Marre S., Beysens D., Hahn I. // Phys. Rev. E. 2018. Vol. 97. P. 020101(R).
- Vorob'ev V.S., Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Pokholchenko V.A. // J. Phys.: Conf. Ser. 2019. Vol. 1147. P. 012016.
- 3. Funke M., Kleinrahm R., Wagner W. // J. Chem. Thermod. 2001. Vol. 34. P. 735.
- 4. Ustyuzhanin E.E., Shishakov V.V., Rykov V.A., Popov P.V., Frenkel M.L. // Vestnik MEI. 2011. No 6. P. 167 (in Russ.).
- 5. Fisher M.E, Orkoulas G. // Phys. Rev. Lett. 2000. Vol. 85. P. 696.
- 6. Weiner J., Langley K.H., Ford Jr. N.C. // Phys. Rev. Lett. 1974. Vol. 32. P. 879.
- 7. Vorob'ev V.S., Ustyuzhanin E.E., Ochkov V.F., Shishakov V.V., Aung Tu Ra Tun, Rykov V.A., Rykov S.V// Teplofizika Vysokikh Temperatur. 2020. Vol. 58. P. 355 (in Russ.).
- 8. Pestak M.W., Goldstein R.E., Chan M.H.W., de Bruyn J.R., Balzarini D.A., Ashcroft N.W. // Phys. Rev. 1987. Vol. 36. P. 599.
- Rykov S.V., Kudryavtseva I.V., Rykov V.A. // Vestnik Mezhdunarodnoy akademii kholoda 2018. No 4. P. 28 (in Russ.).
- 10. Stankus S.V., Khairulin R.A. // Int. J. Thermophys. 2006. Vol. 27. P. 1110.
- 11. Khairulin R.A., Stankus S.V. // Zhurnal Fizicheskoi Khimii 2021. Vol. 95. P. 529 (in Russ.).

- 12. Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Popov P.V., Rykov V.A., Frenkel M.L. // Rus. J. Phys. Chem. B. Vol. 6. P. 912.
- 13. Anisimov M.A., Rabinovich V.A., Sychev V.V. Termodinamika kriticheskogo sostoyaniya individual'nyh veshchestv. M.: Energoizdat, 1990. 190 s. (in Russ.).
- 14. Ochkov V.F., Rykov V.A., Rykov S.V., Ustyuzhanin E.E., Znamensky B.E. // J. Phys.: Conf. Ser. 2018. Vol. 946. P. 012119.
- 15. Zhao W., Wang L., Wu L., Li L., Cai J. // J. Chem. Phys. 2013. Vol. 138. P. 234502.
- 16. Zhou Z., Cai J., Hu Y. // Molecular Physics. 2022. Vol. 120. P. e1987541.
- 17. Kudryavtseva I.V., Rykov S.V., Rykov V.A., Ustyuzhanin E.E // Teplofizika Vysokikh Temperatur. 2023. Vol. 61. P. 514 (in Russ.)
- 18. Wang L., Zhao W., Wu L., Li L., Cai J. // J. Chem. Phys. 2013. Vol. 139. P. 124103.