Ïðèëîæåíèå 3

Âñòðîåííûå ôóíêöèè Mathcad 8 Pro

3.1. Âñòðîåííûå ôóíêöèè Mathcad ïî ãðóïïàì:

1. Âîñåìíàäöàòü ôóíêöèé Áåññåëÿ (Bessel):

2. Ïÿòü ôóíêöèé ðàáîòû ñ êîìïëåêñíûìè ÷èñëàìè (Complex Numbers):

3. Òðèíàäöàòü ôóíêöèé ðåøåíèÿ äèôôåðåíöèàëüíûõ óðàâíåíèé è ñèñòåì (çàäà÷à Êîøè, êðàåâàÿ çàäà÷à, óðàâíåíèÿ â ÷àñòíûõ ïðîèçâîäíûõ – Differential Equation Solving):

4. Òðè ôóíêöèè òèïà âûðàæåíèÿ (Expression Type):

5. Äâàäöàòü ïÿòü ôóíêöèé ðàáîòû ñ ôàéëàìè (File Access):

6. Øåñòüäåñÿò ÷åòûðå ôóíêöèè îáðàáîòêè ñèãíàëîâ (Signal Processing):

7. Äåâÿíîñòî ïÿòü ôóíêöèé îáðàáîòêè îáðàçîâ (Image Processing):

8. Âîñåìü ôóíêöèé ïðåîáðàçîâàíèé Ôóðüå (Fourier Transform):

9. Äâåíàäöàòü ãèïåðáîëè÷åñêèõ ôóíêöèé (Hyperbolic):

10. Äåâÿíîñòî ïÿòü ôóíêöèé îáðàáîòêè îáðàçîâ (Image Processing):

11. Îäèííàäöàòü ôóíêöèé èíòåðïîëÿöèè è ýêñòðàïîëÿöèè (Interpolation and Prediction):

12. Òðè ëîãàðèôìè÷åñêèå è ýêñïîíåíöèàëüíûå ôóíêöèè (Log and Exponential):

33. Ïÿòü ôóíêöèé òåîðèè ÷èñåë è êîìáèíàòîðèêè (Numbers Theory/Combinatorics):

14. Ïÿòü ôóíêöèé ñòóïåíåê è óñëîâèé (Piecewise Continuous):

15. Øåñòíàäöàòü ôóíêöèé ïëîòíîñòè âåðîÿòíîñòè (Probably Density):

16. Òðèäöàòü øåñòü ôóíêöèé ðàñïðåäåëåíèÿ âåðîÿòíîñòè (Probably Distribution):

17. Âîñåìíàäöàòü ôóíêöèé ñëó÷àéíûõ ÷èñåë (Random Numbers):

18. Äåñÿòü ôóíêöèé ðåãðåññèè è ñãëàæèâàíèÿ (Regression and Smoothing):

19. Ñåìü ôóíêöèé ðåøåíèÿ àëãåáðàè÷åñêèõ óðàâíåíèé è ñèñòåì, à òàêæå îïòèìèçàöèè (Solving):

20. ×åòûðå ôóíêöèè ñîðòèðîâêè ìàññèâîâ (Sorting):

21. Äâåíàäöàòü ñïåöèàëüíûõ ôóíêöèé (Special):

22. Øåñòüäåñÿò äâå ñòàòèñòè÷åñêèå ôóíêöèè (Statistics):

23. Âîñåìü òåêñòîâûõ ôóíêöèé (String):

24. ×åòûðå ôóíêöèè îêðóãëåíèÿ è ðàáîòû ñ ÷àñòüþ ÷èñëà (Truncation and Round-Off):

25. Ôóíêöèè, îïðåäåëåííûå ïîëüçîâàòåëåì (User function):

26. Òðèäöàòü ÷åòûðå ôóíêöèè ðàáîòû ñ âåêòîðàìè è ìàòðèöàìè (Vector and Matrix):

27. Äâå ôóíêöèè âîëíîâîãî ïðåîáðàçîâàíèÿ (Wavelet Transform):

3.2. Âñòðîåííûå ôóíêöèè Mathcad ïî àëôàâèòó:

3.3. Ôóíêöèè ÷èñëåííûõ ìåòîäîâ (Numerical Recipes):

 

Îáîçíà÷åíèÿ:

x è y – âåùåñòâåííûå ÷èñëà;

S – öåïî÷êà ñèìâîëîâ (òåêñò);

z – âåùåñòâåííîå ëèáî êîìïëåêñíîå ÷èñëî;

m, n, i, j è k – öåëûå ÷èñëà;

v, u è âñå èìåíà, íà÷èíàþùèåñÿ ñ v, – âåêòîðû;

A è B – ìàòðèöû ëèáî âåêòîðû;

M è N – êâàäðàòíûå ìàòðèöû;

F – âåêòîð-ôóíêöèÿ;

file – ëèáî èìÿ ôàéëà, ëèáî ôàéëîâàÿ ïåðåìåííàÿ, ïðèñîåäèíåííàÿ ê èìåíè ôàéëà.

Âñå óãëû èçìåðÿþòñÿ â ðàäèàíàõ. Ìíîãîçíà÷íûå ôóíêöèè (àðêñèíóñ, íàïðèìåð) è ôóíêöèè ñ êîìïëåêñíûì àðãóìåíòîì âñåãäà âîçâðàùàþò ãëàâíîå çíà÷åíèå.

Èìåíà ïðèâåäåííûõ ôóíêöèé íå÷óâñòâèòåëüíû ê øðèôòó, íî ÷óâñòâèòåëüíû ê ðåãèñòðó – èõ ñëåäóåò ïå÷àòàòü â òî÷íîñòè òàê, êàê îíè ïðèâåäåíû. Ðåêîìåíäóåòñÿ íå íàáèðàòü èìåíà ôóíêöèé ÷åðåç êëàâèàòóðó, à ïîëüçîâàòüñÿ êíîïêîé (êîìàíäîé) Insert Function... (Âñòàâèòü ôóíêöèþ...) èç ìåíþ Insert. Ýòî ïîçâîëèò ðàáîòàòü ñ Ìàñòåðîì ôóíêöèé – ñì. ðèñ. 1.28 â ýòþäå 1. Ïîñëå èìåíè ôóíêöèè ñëåäóåò ÷èòàòü «âîçâðàùàåò[1]» è äàëåå ïî òåêñòó.

Àâòîð äîëæåí ïðèçíàòüñÿ ÷èòàòåëþ, ÷òî îí íå ñîâñåì óâåðåí â àáñîëáþòíîé ïðàâèëüíîñòè ïåðåâîäà ñóòè íåêîòîðûõ ôóíêöèé, îñîáåííî òåõ, ñ êàêèìè àâòîð íå ðàáîòàë. Áûëà äàæå èäåÿ îñòàâèòü òóò àíãëèéñêèé òåêñò. Îíà îñóùåñòâëåíà íàïîëîâèíó – ñïèñîê âñòðîåííûõ ôóíêöèé ýëåêòðîííîãî ó÷åáíèêà Numerical Recieptes (ñì. íèæå) íå ïåðåâåäåí.  êîíöå îïèñàíèÿ íåêîòîðûõ ôóíêöèé óêàçàíû íîìåðà ðèñóíêîâ, ãäå îíè çàäåéñòâîâàíû.

3.1. Âñòðîåííûå ôóíêöèè Mathcad ïî ãðóïïàì[2]:

1. Âîñåìíàäöàòü ôóíêöèé Áåññåëÿ (Bessel):

Ai(x), bei(n, x), ber(n, x), Bi(x), I0(x), I1(x), In(m, x), J0(x), J1(x), Jn(m, x), js(n, x), K0(x), K1(x), Kn(m, x), Y0(x), Y1(x), Yn(m, x) è ys(n, x).

2. Ïÿòü ôóíêöèé ðàáîòû ñ êîìïëåêñíûìè ÷èñëàìè (Complex Numbers):

arg(z), csgn(z), Im(z), Re(z) è signum(z).

3. Òðèíàäöàòü ôóíêöèé ðåøåíèÿ äèôôåðåíöèàëüíûõ óðàâíåíèé è ñèñòåì (çàäà÷à Êîøè, êðàåâàÿ çàäà÷à, óðàâíåíèÿ â ÷àñòíûõ ïðîèçâîäíûõ – Differential Equation Solving):

Bulstoer(y, x1, x2, npts, D), bulstoer(y, x1, x2, acc, D, kmax, save), bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score), multigrid(M, ncycle), relax(A, B, C, D, E, F, U, rjac), Rkadapt(y, x1, x2, npts, D), rkadapt(y, x1, x2, acc, D, kmax, save), rkfixed(y, x1, x2, npts, D), sbval(v, x1, x2, D, load, score), Stiffb(y, x1, x2, npts, D, J), stiffb(y, x1, x2, acc, D, J, kmax, save), Stiffr(y, x1, x2, npts, D, J) è stiffr(y, x1, x2, acc, D, J, kmax, save).

4. Òðè ôóíêöèè òèïà âûðàæåíèÿ (Expression Type):

IsArray(x), IsScalar(x) è IsString(x).

5. Äâàäöàòü ïÿòü ôóíêöèé ðàáîòû ñ ôàéëàìè (File Access):

APPENDPRN(file), LoadColormap(file), READ(file), READ_BLUE(file), READBMP(file), READ_GREEN(file), READ_HLS(file), READ_HLS_HUE(file), READ_HLS_LIGHT(file), READ_HLS_SAT(file), READ_HSV(file), READ_HSV_HUE(file), READ_HSV_SAT(file), READ_HSV_VALUE(file), READ_IMAGE(file), READPRN(file), READ_RED(file), READRGB(file), READRGB(file), SaveColormap(file, M), WRITE(file), WRITE_HLS(file), WRITE_HSV(file), WRITEBMP(file), WRITEPRN(file) è WRITERGB(file).

6. Øåñòüäåñÿò ÷åòûðå ôóíêöèè îáðàáîòêè ñèãíàëîâ (Signal Processing):

(ñì. äîêóìåíòàöèþ è help ïàêåòà è îäíîèìåííîãî ýëåêòðîííîãî ó÷åáíèêà).

7. Äåâÿíîñòî ïÿòü ôóíêöèé îáðàáîòêè îáðàçîâ (Image Processing):

(ñì. äîêóìåíòàöèþ è help ïàêåòà).

8. Âîñåìü ôóíêöèé ïðåîáðàçîâàíèé Ôóðüå (Fourier Transform):

CFFT(A), cfft(A), FFT(v), fft(v), ICFFT(A), icfft(A), IFFT(v) è ifft(v).

9. Äâåíàäöàòü ãèïåðáîëè÷åñêèõ ôóíêöèé (Hyperbolic):

sinh(z), cosh(z), tanh(z), csch(z), sech(z), coth(z), asinh(z), acosh(z), atanh(z), acoth(z), asech(z) è acsch(z).

10. Äåâÿíîñòî ïÿòü ôóíêöèé îáðàáîòêè îáðàçîâ (Image Processing):

(ñì. äîêóìåíòàöèþ è help ïàêåòà).

11. Îäèííàäöàòü ôóíêöèé èíòåðïîëÿöèè è ýêñòðàïîëÿöèè (Interpolation and Prediction):

linterp(vx, vy, x), cspline(vx, vy), pspline(vx, vy), lspline(vx, vy), interp(vs, vx, vy, x), cspline(Mxy, Mz), pspline(Mxy, Mz), lspline(Mxy, Mz), interp(vs, Mxy, Mz, v) è predict(v, m, n) è bspline(vx, vy, u, n).

12. Òðè ëîãàðèôìè÷åñêèå è ýêñïîíåíöèàëüíûå ôóíêöèè (Log and Exponential):

exp(z) (èëè ez), ln(z) è log(z, b).

33. Ïÿòü ôóíêöèé òåîðèè ÷èñåë è êîìáèíàòîðèêè (Numbers Theory/Combinatorics):

combin(n, k), gcd(A), lcm(A), mod(n, k) è premut(n, k).

14. Ïÿòü ôóíêöèé ñòóïåíåê è óñëîâèé (Piecewise Continuous):

ε(i, j, k), F(x), if(cond, x, y), δ(x, y) è sign(x).

15. Øåñòíàäöàòü ôóíêöèé ïëîòíîñòè âåðîÿòíîñòè (Probably Density):

dbeta(x, s1, s2), dbinom(k, n, p), dchisq(x, d), dexp(x, r), dF(x, d1, d2), dgamma(x, s), dgeom(k, p), dhypergeom(m, a, b, n), dlnorm(x, mu, sigma), dlogis(x, l, s), dnbinom(k, n, p), dnorm(x, mu, sigma), dpois(k, l) dt(x, d), dunif(x, a, b) è dweibull(x, s).

16. Òðèäöàòü øåñòü ôóíêöèé ðàñïðåäåëåíèÿ âåðîÿòíîñòè (Probably Distribution):

cnorm(x), pbeta(x, s1, s2), pbinom(k, n, p), pcauchy(x, l, s), pchisq(x, d), pexp(x, r), pF(x, d1, d2), pgamma(x, s), pgeom(k, p), phypergeom(m, a, b, n), plnorm(x, mu, sigma), plogis(x, l, s), pnbinom(k, n, p), pnorm(x, mu, sigma), ppois(k, l), pt(x, d), punif(x, a, b), pweibull(x, s), qbeta(p, s1, s2), qbinom(p, n, q), qcauchy(p, l, s), qchisq(p, d), qexp(p, r), qF(p, d1, d2), qgamma(p, s), qgeom(p, q), qhypergeom(p, n, M, N), qlnorm(p, mu, sigma), qlogis(p, l, s), qnbinom(p, n, r), qnorm(p, mu, sigma), qpois(p, l), qt(p, d) è qunif(p, a, b).

17. Âîñåìíàäöàòü ôóíêöèé ñëó÷àéíûõ ÷èñåë (Random Numbers):

rbeta(m, s1, s2), rbinom(m, n, p), rcauchy(m, l, s), rchisq(m, d), rexp(m, r), rF(m, d1, d2), rgamma(m, s), rgeom(m, p), rhypergeom(m, a, b, n), rlnorm(m, mu, sigma), rlogis(m, l, s), rnbinom(m, n, p), rnd(x), rnorm(m, mu, sigma), rpois(m, l), rt(m, d), runif(m, a, b) è rweibull(m, s).

18. Äåñÿòü ôóíêöèé ðåãðåññèè è ñãëàæèâàíèÿ (Regression and Smoothing):

genfit(vx, vy, vg, F), intercept(vx, vy), ksmooth(vx, vy, b), linfit(vx, vy, F), loess(Mx, My, span), medsmooth(vy, n), regress(Mx, vy, n), slope(vx, vy), stderr(vx, vy) è supsmooth(vx, vy).

19. Ñåìü ôóíêöèé ðåøåíèÿ àëãåáðàè÷åñêèõ óðàâíåíèé è ñèñòåì, à òàêæå îïòèìèçàöèè (Solving):

Find(var1, var2,...), lsolve(M, v), Maximize(f, var1, var2,...), MinErr(var1, var2,...), Minimize(f, var1, var2,...), polyroots(v) è root(f(var), var).

20. ×åòûðå ôóíêöèè ñîðòèðîâêè ìàññèâîâ (Sorting):

csort(A, j), reverse(A), reverse(v), rsort(A, j) è sort(v).

21. Äâåíàäöàòü ñïåöèàëüíûõ ôóíêöèé (Special):

erf(z), erfc(x), fhyper(a, b, c, x), Gamma(a, z), Her(n, x), ibeta(a, x, y), Jac(n, a, b, x), Lag(n, x), Leg(n, x), mhyper(a, b, x), Tcheb(n, x) è Ucheb(n, x).

22. Øåñòüäåñÿò äâå ñòàòèñòè÷åñêèå ôóíêöèè (Statistics):

mean(A), median(A), var(A), Var(A), cvar(A,B), stdev(A), Stdev(A), corr(A, B), dbeta(x, s1, s2), dbinom(k, n, p), dcauchy(x, l, s), dchisq(x, d), dexp(x, r), dF(x, d1, d2), dgamma(x, s), dgeom(k, p), dhypergeom(m, a, b, n), dlnorm(x, m, s), dlogis(x, l, s), dnbinom(k, n, p), dnorm(x, m, s), dpois(k, l), dt(x, d), dunif(x, a, b), dweibull(x, s), cnorm(x), fhyper(a, b, c, x), mhyper(a, b, x), pbeta(x, s1, s2), pbinom(k, n, p), pcauchy(x, l, s), pchisq(x, d), pexp(x, r), pF(x, d1, d2), pgamma(x, s), pgeom(k, p), phypergeom(m, a, b, n), plnorm(x, m, s), plogis(x, l, s), pnbinom(k, n, p), pnorm(x, m, s), ppois(k, l), pt(x, d), punif(x, a, b), pweibull(x, s), qbeta(x, s1, s2), qbinom(p, n, q), qcauchy(p, l, s), qchisq(p, d), qexp(p, r), qF(p, d1, d2), qgamma(p, s), qgeom(p, q), qhypergeom(p, a, b, n), qlnorm(p, m, s), qlogis(p, l, s), qnbinom(p, n, q), qnorm(p, m, s), qpois(p, l), qt(p, d), qunif(p, a, b) è qweibull(p, s).

23. Âîñåìü òåêñòîâûõ ôóíêöèé (String):

concat(S1, S2, S3,...), strlen(S), search(S, SubS, m), substr(S, m, n), str2num(S), num2str(z), str2vec(S) è vec2str(v).

24. ×åòûðå ôóíêöèè îêðóãëåíèÿ è ðàáîòû ñ ÷àñòüþ ÷èñëà (Truncation and Round-Off):

ceil(x), floor(x), round(x, n) è trunc(x).

25. Ôóíêöèè, îïðåäåëåííûå ïîëüçîâàòåëåì (User function):

kronecker(m, n) è Psi(z).

26. Òðèäöàòü ÷åòûðå ôóíêöèè ðàáîòû ñ âåêòîðàìè è ìàòðèöàìè (Vector and Matrix):

augment(A, B), cholesky(M), cols(A), cond1(M), cond2(M), conde(M), condi(M), diag(v), eigenvals(M), eigenvec(M, z), eigenvecs(M), geninv(A), genvals(M, N), genvecs(M, N), identity(n), last(v), lenght(v), lu(M), matrix(m, n, f), max(A), min(A), norm1(M), norm2(M), norme(M), normi(M), qr(A), rank(A), rows(A), rref(A), stack(A, B), submatrix(A, ir, jr, ic, jc), svd(A), svds(A) è tr(M).

27. Äâå ôóíêöèè âîëíîâîãî ïðåîáðàçîâàíèÿ (Wavelet Transform):

iwave(v) è wave(v).

3.2. Âñòðîåííûå ôóíêöèè Mathcad ïî àëôàâèòó:

1.      acos(z) – àðêêîñèíóñ z.

2.      acosh(z) – ãèïåðáîëè÷åñêèé àðêêîñèíóñ – îáðàòíàÿ ôóíêöèÿ ê ãèïåðáîëè÷åñêîìó êîñèíóñó.

3.      acot(z) – àðêêîòàíãåíñ z (â ðàäèàíàõ). Ðåçóëüòàò – ìåæäó 0 è p, åñëè z âåùåñòâåííîå. Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü, åñëè z – êîìïëåêñíîå ÷èñëî.

4.      acoth(z) – îáðàòíûé ãèïåðáîëè÷åñêèé êîòàíãåíñ z. Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

5.      acsc(z) – àðêêîñåêàíñ z (â ðàäèàíàõ). Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

6.      acsch(z) – ãèïåðáîëè÷åñêèé àðêêîñåêàíñ. Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

7.      Ai(x) – çíà÷åíèå ôóíêöèè Ýéðè ïåðâîãî âèäà.

8.      angle(x, y) – óãîë (â ðàäèàíàõ) ìåæäó ïîëîæèòåëüíûì íàïðàâëåíèåì îñè x è ðàäèóñ-âåêòîðîì òî÷êè (x, y). Ðåçóëüòàò îò 0 äî 2p.

9.      APPENDPRN(file) – äîáàâëåíèå ìàòðèöû A ê ñóùåñòâóþùåìó ôàéëó äàííûõ (îáëàäàþùåìó ñòðóêòóðîé ASCII) file.prn íà äèñêå. Êàæäàÿ ñòðîêà ìàòðèöû ñòàíîâèòñÿ íîâîé ñòðîêîé â äàííîì ôàéëå. Ñóùåñòâóþùèå äàííûå äîëæíû èìåòü ñòîëüêî æå ñòîëáöîâ, ñêîëüêî A.

10.  arg(z) – óãîë (â ðàäèàíàõ) ìåæäó ïîëîæèòåëüíûì íàïðàâëåíèåì îñè x è êîìïëåêñíîãî ÷èñëà z. Ðåçóëüòàò îò -p äî p. Âîçâðàùàåò q, êîãäà z ïðåäñòàâëåíî â âèäå r×ei×q.

11.  asec(z) – êîñåêàíñ z (â ðàäèàíàõ). Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

12.  asech(z) – ãèïåðáîëè÷åñêèé êîñåêàíñ z. Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

13.  asin(z) – óãîë (â ðàäèàíàõ), ñèíóñ êîòîðîãî ðàâåí z; ðåçóëüòàò îò -p/2 äî p/2, åñëè z âåùåñòâåííîå. Äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî z.

14.  asinh(z) – àðåàñèíóñ: îáðàòíàÿ ôóíêöèÿ ê ãèïåðáîëè÷åñêîìó ñèíóñó z. Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

15.  atan(z) – àðêòàíãåíñ z. Ðåçóëüòàò îò -p/2 äî p/2, åñëè z âåùåñòâåííîå. Äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî z.

16.   atan2(x, y) – óãîë (â ðàäèàíàõ) îò ïîëîæèòåëüíîãî íàïðàâëåíèÿ îñè àáñöèññ äî ïðÿìîé, ñîäåðæàùåé íà÷àëî êîîðäèíàò (0, 0) è òî÷êó ñ êîîðäèíàòàìè (x, y). È x è y äîëæíû áûòü âåùåñòâåííûìè ÷èñëàìè. Ðåçóëüòàò îò -p äî p.

17.  atanh(z) – àðåàòàíãåíñ: îáðàòíàÿ ôóíêöèÿ ê ãèïåðáîëè÷åñêîìó òàíãåíñó. Ðåçóëüòàò – äåéñòâèòåëüíàÿ ÷àñòü äëÿ êîìïëåêñíîãî ÷èñëà z.

18.  augment(A, B) – ãîðèçîíòàëüíîå ñëèÿíèå äâóõ ìàòðèö (âåêòîðîâ); îáå ìàòðèöû äîëæíû èìåòü îäèíàêîâûé ðàçìåð.

19.  bei(n, x) – çíà÷åíèå ìíèìîé ôóíêöèè Áåññåëÿ-Êåëüâèíà.

20.  ber(n, x) – çíà÷åíèå âåùåñòâåííîé ôóíêöèè Áåññåëÿ-Êåëüâèíà ïîðÿäêà n.

21.  Bi(x) çíà÷åíèå ôóíêöèè Ýéðè âòîðîãî âèäà.

22.  bspline(vx, vy, u, n) – âåêòîð êîýôôèöèåíòîâ B-ñïëàéíà ñòåïåíè n. Ïîëó÷åííûé âåêòîð ñòàíîâèòñÿ ïåðâûì àðãóìåíòîì ôóíêöèè interp.

23.  bulstoer(y, x1, x2, acc, D, kmax, save) – ðåøåíèå ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé ñ èñïîëüçîâàíèåì ìåòîäà Áóëèðøà ¾ Øò¸ðà (Bulirsh ¾ Stoer). y – âåêòîð íà÷àëüíûõ çíà÷åíèé ïî èíòåðâàëó (x1, x2); D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. Kmax – ìàêñèìàëüíîå ÷èñëî ïðîìåæóòî÷íûõ òî÷åê, ïî êîòîðûì äîëæíî áûòü àïïðîêñèìèðîâàíî ðåøåíèå. Save – íàèìåíüøåå äîïóñòèìîå ïðîñòðàíñòâî ìåæäó âåëè÷èíàìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå.

24.  Bulstoer(v, x1, x2, npts, D) – ðåøåíèå ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé ñ èñïîëüçîâàíèåì ìåòîäà Áóëèðøà ¾ Øò¸ðà. y – âåêòîð íà÷àëüíûõ çíà÷åíèé ïî èíòåðâàëó (x1, x2); D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. Npts – êîëè÷åñòâî òî÷åê, íå ÿâëÿþùèõñÿ èçíà÷àëüíûìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå.

25.  bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score) – íà÷àëüíûå óñëîâèÿ äëÿ êðàåâîé çàäà÷è. v1, v2 – âåêòîðû íà÷àëüíûõ çíà÷åíèé íåîïðåäåëåííûõ ñëåâà îò x1 è x2 ñîîòâåòñòâåííî. D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. Load(x1, v1), load(x1, v2) – âåùåñòâåííûå âåêòîðû çíà÷åíèé ôóíêöèè, n ýëåìåíòîâ êîòîðûõ àíàëîãè÷íû çíà÷åíèÿì n íåèçâåñòíûõ ôóíêöèé â òî÷êàõ x1, x2 ñîîòâåòñòâåííî. Score(xf, y) – âåùåñòâåííûé n-ýëåìåíòíûé âåêòîð çíà÷åíèé ôóíêöèè, îïðåäåëÿþùèé, íàñêîëüêî, ïî âàøåìó æåëàíèþ, ðåøåíèå äîëæíî ñîîòâåòñòâîâàòü çíà÷åíèþ â òî÷êå xf (ðåøåíèå èçâåñòíî â íåêîòîðîé ïðîìåæóòî÷íîé òî÷êå xf).

26.  ceil(x) – íàèìåíüøåå öåëîå, íå ïðåâûøàþùåå x.

27.  cfft(A) – áûñòðîå äèñêðåòíîå ïðåîáðàçîâàíèå Ôóðüå ìàññèâà êîìïëåêñíûõ ÷èñåë A. Âîçâðàùàåò ìàññèâ òàêîãî æå ðàçìåðà, êàê è åãî àðãóìåíò. A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà èëè âåêòîð.

28.  CFFT(A) – òî æå, ÷òî è â ïóíêòå 27, íî èñïîëüçóåò äðóãèå íîðìó è çíàê.

29.  cholesky(M) – òðåóãîëüíîå ðàçëîæåíèå ìàòðèöû M ìåòîäîì Õîëåöêîãî. M = L×LT, ãäå M – ñèììåòðè÷íàÿ ìàòðèöà, L – òðåóãîëüíàÿ ìàòðèöà. Âîçâðàùàåò L.

30.  cnorm(x) – ñóììàðíîå ñòàíäàðòíîå íîðìàëüíîå ðàñïðåäåëåíèå.

31.  cols(A) – ÷èñëî ñòîëáöîâ â ìàññèâå A. A – ìàòðèöà èëè âåêòîð (ðèñ. 4.10).

32.  combin(n, k) – ÷èñëî ïîäíàáîðîâ (êàæäûé ðàçìåðîì k), êîòîðîå ìîæåò áûòü ñôîðìèðîâàíî èç îáúåêòîâ n. Ýòî ÷èñëî ïîäíàáîðîâ èçâåñòíî êàê êîìáèíàöèÿ; n è k – öåëûå ÷èñëà, áîëüøå ëèáî ðàâíûå íóëþ (0£k£n).

33.  concat(S1, S2,...) – «ñêëåèâàíèå» äâóõ (èëè áîëåå) òåêñòîâûõ ïåðåìåííûõ S1 è S2. Ñòàâèò S2 â êîíåö S1 è òàê äàëåå (ðèñ. 1.30).

34.  cond1(M) – ÷èñëî îáóñëîâëåííîñòè ìàòðèöû, âû÷èñëåííîå â íîðìå L1.

35.  cond2(M) – ÷èñëî îáóñëîâëåííîñòè ìàòðèöû, âû÷èñëåííîå â íîðìå L2.

36.  condå(M) – ÷èñëî îáóñëîâëåííîñòè ìàòðèöû, âû÷èñëåííîå â íîðìå åâêëèäîâîãî ïðîñòðàíñòâà.

37.  condi(M) – ÷èñëî îáóñëîâëåííîñòè ìàòðèöû, îñíîâàííîå íà ðàâíîìåðíîé íîðìå.

38.  corr(A, B) – êîýôôèöèåíò êîððåëÿöèè äëÿ äâóõ ìàññèâîâ A è B, ãäå A è B – ìàòðèöû ðàçìåðà m´n, èëè âåêòîðû òàêîãî æå ðàçìåðà.

39.  cos(z) – êîñèíóñ z (ðèñ 1.15, 1,16).

40.  cosh(z) – ãèïåðáîëè÷åñêèé êîñèíóñ z.

41.  cot(z) – êîòàíãåíñ z.

42.  coth(z) – ãèïåðáîëè÷åñêèé êîòàíãåíñ z.

43.  csc(z) – êîñåêàíñ z.

44.  csch(z) – ãèïåðáîëè÷åñêèé êîñåêàíñ z.

45.  csgn(z) – âîçâðàùàåò 0, åñëè z=0, 1 – åñëè Re(z)>0 èëè (Re(z)=0 è Im(z)>0), -1 – â äðóãèõ ñëó÷àÿõ (ðèñ. 7.13).

46.  csort(A, j) – ñîðòèðîâêà ìàòðèöû A ïî ñòîëáöó j (ïåðåñòàíîâêà ñòðîê ïî âîçðàñòàíèþ çíà÷åíèé ýëåìåíòîâ â ñòîëáöå j). Ðåçóëüòàò – ìàòðèöà òàêîãî æå ðàçìåðà, êàê A.

47.  cspline(vx, vy) – âåêòîð êîýôôèöèåíòîâ êóáè÷åñêîãî ñïëàéíà, ïîñòðîåííîãî ïî âåêòîðàì vx è vy. Ïîëó÷åííûé âåêòîð ñòàíîâèòñÿ ïåðâûì àðãóìåíòîì ôóíêöèè interp (ðèñ. 4.8, 4.10).

48.  cvar(A, B) – êîâàðèàöèÿ ýëåìåíòîâ äâóõ ìàññèâîâ A è B. A è B – âåùåñòâåííûå èëè êîìïëåêñíûå ìàòðèöû èëè âåêòîðû ðàçìåðîì m´n.

49.  dbeta(x, s1, s2) – ïëîòíîñòü âåðîÿòíîñòè äëÿ b-ðàñïðåäåëåíèÿ.

50.  dbinom(k, n, p) – çíà÷åíèå âåðîÿòíîñòè Pr(X=k), ãäå X – ñëó÷àéíàÿ âåëè÷èíà, èìåþùàÿ áèíîìèàëüíîå ðàñïðåäåëåíèå.

51.  dcauchy(x, l, s) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ðàñïðåäåëåíèÿ Êîøè.

52.  dchisq(x, d) – ïëîòíîñòü âåðîÿòíîñòè äëÿ c-êâàäðàò-ðàñïðåäåëåíèÿ.

53.  dexp(x, r) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ýêñïîíåíöèàëüíîãî ðàñïðåäåëåíèÿ.

54.  dF(x, d1, d2) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ðàñïðåäåëåíèÿ Ôèøåðà.

55.  dgamma(x, s) – ïëîòíîñòü âåðîÿòíîñòè äëÿ g-ðàñïðåäåëåíèÿ.

56.  dgeom(k, p) – òî æå, ÷òî è ïóíêòå 55, íî äëÿ ãåîìåòðè÷åñêîãî ðàñïðåäåëåíèÿ.

57.  dhypergeom(m, a, b, n) – òî æå, ÷òî è ïóíêòå 55, íî äëÿ ãèïåðãåîìåòðè÷åñêîãî ðàñïðåäåëåíèÿ. Âîçâðàùàåò çíà÷åíèå âåðîÿòíîñòè Pr(x=m).

58.  diag(v) – äèàãîíàëüíàÿ ìàòðèöà, ýëåìåíòû ãëàâíîé äèàãîíàëè êîòîðîé – ýëåìåíòû âåêòîðà v.

59.  dlnorm(x, m, s) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ëîãíîðìàëüíîãî ðàñïðåäåëåíèÿ.

60.  dlogis(x, l, s) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ïîñëåäîâàòåëüíîãî ðàñïðåäåëåíèÿ.

61.  dnbinom(k, n, p) – òî æå, ÷òî è ïóíêòå 55, íî äëÿ îòðèöàòåëüíîãî áèíîìèàëüíîãî ðàñïðåäåëåíèÿ.

62.  dnorm(x, m, s) – ïëîòíîñòü âåðîÿòíîñòè äëÿ íîðìàëüíîãî ðàñïðåäåëåíèÿ.

63.  dpois(k, l) – òî æå, ÷òî è ïóíêòå 55, íî äëÿ ðàñïðåäåëåíèÿ Ïóàññîíà.

64.  dt(x, d) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ðàñïðåäåëåíèÿ Ñòüþäåíòà.

65.  dunif(x, a, b) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ðàâíîìåðíîãî ðàñïðåäåëåíèÿ.

66.  dweibull(x, s) – ïëîòíîñòü âåðîÿòíîñòè äëÿ ðàñïðåäåëåíèÿ Âåéáóëëà.

67.  eigenvals(M) – âåêòîð ñîáñòâåííûõ çíà÷åíèé ìàòðèöû M.

68.  eigenvec(M, z) – íîðìèðîâàííûé ñîáñòâåííûé âåêòîð êâàäðàòíîé ìàòðèöû M, ñîîòâåòñòâóþùèé åå ñîáñòâåííîìó çíà÷åíèþ z.

69.  eigenvecs(M) – ìàòðèöà, ñòîëáöàìè êîòîðîé ÿâëÿþòñÿ ñîáñòâåííûå âåêòîðû ìàòðèöû M. Ïîðÿäîê ðàñïîëîæåíèÿ ñîáñòâåííûõ âåêòîðîâ ñîîòâåòñòâóåò ïîðÿäêó ñîáñòâåííûõ çíà÷åíèé, âîçâðàùàåìûõ ôóíêöèåé eigenvals.

70.  erf(x) – ôóíêöèÿ îøèáîê.

71.  erfc(x) – äîïîëíèòåëüíàÿ ôóíêöèÿ îøèáêè. x – âåùåñòâåííîå ïîëîæèòåëüíîå ñêàëÿðíîå ÷èñëî.

72.  error(S) – ñîîáùåíèå îá îøèáêå äëÿ òåêñòîâîé ïåðåìåííîé S (ðèñ. 4.10, 6.4).

73.  exp(z) – çíà÷åíèå ýêñïîíåíöèàëüíîé ôóíêöèè ez.

74.  fft(v) – áûñòðîå äèñêðåòíîå ïðåîáðàçîâàíèå Ôóðüå äëÿ âåùåñòâåííûõ ÷èñåë. v – âåùåñòâåííûé âåêòîð ñ 2n ýëåìåíòàìè, ãäå n – öåëîå ÷èñëî. Ïîëó÷èì âåêòîð ðàçìåðà 2n-1+1.

75.  FFT(v) – òî æå, ÷òî è fft(v), íî èñïîëüçóåò äðóãóþ íîðìó è çíàê. Âîçâðàùàåò âåêòîð ðàçìåðà 2n-1+1.

76.  fhyper(a, b, c, x) – çíà÷åíèå ãèïåðãåîìåòðè÷åñêîé ôóíêöèè Ãàóññà â òî÷êå x; a, b, c – äàííûå ïàðàìåòðû.

77.  Find(var1, var2,...) – çíà÷åíèÿ var1, var2 ,... , ïðåäñòàâëÿþùèå ðåøåíèå ñèñòåìû óðàâíåíèé. ×èñëî âîçâðàùàåìûõ çíà÷åíèé ðàâíî ÷èñëó àðãóìåíòîâ. Âîçâðàùàåò ñêàëÿð, åñëè òîëüêî îäèí àðãóìåíò, â äðóãîì ñëó÷àå – âåêòîð îòâåòà (ðèñ. 1.6, 1.8, 1.9, 1.14, 1.15, 3.3, 3.4).

78.  floor(x) – íàèáîëüøåå öåëîå ÷èñëî, ìåíüøåå èëè ðàâíîå x. x äîëæíî áûòü äåéñòâèòåëüíûì ÷èñëîì (ðèñ. 6.9).

79.  gcd(A) – íàèáîëüøåå öåëîå ÷èñëî, íà êîòîðîå äåëÿòñÿ âñå ýëåìåíòû ìàññèâà A. Ýòî öåëîå ÷èñëî – íàèáîëüøèé îáùèé äåëèòåëü ýëåìåíòîâ â A. A – ìàòðèöà èëè âåêòîð, âñå ýëåìåíòû – öåëûå ÷èñëà áîëüøå íóëÿ.

80.  genfit(vx, vy, vg, F) – âåêòîð, ñîäåðæàùèé ïàðàìåòðû, êîòîðûå íàèëó÷øèì îáðàçîì àïïðîêñèìèðóþò ôóíêöèþ F îò x è n ïàðàìåòðîâ u0, u1,... , un -1 ê äàííûì â vx è vy. F – ôóíêöèÿ, êîòîðàÿ âîçâðàùàåò n+1-âåêòîð, ñîäåðæàùèé f è åå ÷àñòíûå ïðîèçâîäíûå ïî n ïàðàìåòðàì. Âåêòîðû vx è vy äîëæíû áûòü îäèíàêîâîãî ðàçìåðà. vgn ýëåìåíòíûé âåêòîð ïðèáëèçèòåëüíûõ çíà÷åíèé äëÿ n ïàðàìåòðîâ (ðèñ. 4.6).

81.  geninv(A) – ìàòðèöà, ëåâàÿ îáðàòíàÿ ìàòðèöå A, L×A=E, ãäå E – åäèíè÷íàÿ ìàòðèöà ðàçìåðîì n íà n, L – ïðÿìîóãîëüíàÿ ìàòðèöà ðàçìåðîì n íà m, A – ïðÿìîóãîëüíàÿ ìàòðèöà ðàçìåðîì m íà n.

82.  genvals(M, N) – âåêòîð îáîáùåííûõ ñîáñòâåííûõ çíà÷åíèé vj ìàòðèöû M: M×x=vj×N×x. M è N – ìàòðèöû ñ äåéñòâèòåëüíûìè ýëåìåíòàìè, x – íåíóëåâîé ñîáñòâåííûé âåêòîð.

83.  genvecs(M, N) – ìàòðèöà, ñîäåðæàùàÿ íîðìèðîâàííûå ñîáñòâåííûå âåêòîðû, îòâå÷àþùèå ñîáñòâåííûì çíà÷åíèÿì â v (âåêòîð, êîòîðûé âîçâðàùåí ôóíêöèåé genvals). j-é ñòîëáåö ýòîé ìàòðèöû ÿâëÿåòñÿ ñîáñòâåííûì âåêòîðîì x, óäîâëåòâîðÿþùèì ñîáñòâåííîìó çíà÷åíèþ óðàâíåíèÿ M×x=vj×N×x. Êâàäðàòíûå ìàòðèöû M è N ñîäåðæàò äåéñòâèòåëüíûå çíà÷åíèÿ.

84.  gmean(A) – ãåîìåòðè÷åñêîå ñðåäíåå ýëåìåíòîâ ìàññèâà A, A – âåùåñòâåííàÿ ìàòðèöà èëè âåêòîð ðàçìåðà m´n, âñå ýëåìåíòû A äîëæíû áûòü áîëüøå íóëÿ (ðèñ. 3.14).

85.  Her(n, x) – ïîëèíîì Ýðìèòà ñòåïåíè n â òî÷êå x.

86.  hist(intervals, A)ãèñòîãðàììà. Âåêòîð intervals çàäàåò ãðàíèöû èíòåðâàëîâ â ïîðÿäêå âîçðàñòàíèÿ. A – ìàññèâ äàííûõ. Âîçâðàùàåò âåêòîð òîé æå ðàçìåðíîñòè, ÷òî è âåêòîð intervals, è ñîäåðæèò ÷èñëî òî÷åê èç A, ïîïàâøèõ â ñîîòâåòñòâóþùèé èíòåðâàë.

87.  hmean(A) – ãàðìîíè÷åñêîå ñðåäíåå ýëåìåíòîâ ìàññèâà A, ãäå A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà (âåêòîð) ðàçìåðîì m´n, âñå ýëåìåíòû A äîëæíû áûòü íåíóëåâûìè.

88.  I0(x) – ìîäèôèöèðîâàííàÿ ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà íóëåâîãî ïîðÿäêà.

89.  I1(x) – ìîäèôèöèðîâàííàÿ ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà ïåðâîãî ïîðÿäêà.

90.  ibeta(a, x, y) – íåïîëíàÿ b-ôóíêöèÿ ñ ïàðàìåòðîì a â òî÷êå (x, y).

91.  icfft(A) – îáðàòíîå ïðåîáðàçîâàíèå Ôóðüå, ñîîòâåòñòâóþùåå cfft. Âîçâðàùàåò ìàññèâ òàêîãî æå ðàçìåðà, êàê è åãî àðãóìåíò.

92.  ICFFT(A) – îáðàòíîå ïðåîáðàçîâàíèå Ôóðüå, ñîîòâåòñòâóþùåå CFFT. Âîçâðàùàåò ìàññèâ òàêîãî æå ðàçìåðà, êàê è åãî àðãóìåíò.

93.  identity(n) – åäèíè÷íàÿ êâàäðàòíàÿ ìàòðèöà ðàçìåðîì n.

94.  if(cond, x, y)x, åñëè cond íå ðàâíî 0, èíà÷å – y (ðèñ. 2.7, 2.8).

95.  ifft(v) – îáðàòíîå ïðåîáðàçîâàíèå Ôóðüå, ñîîòâåòñòâóþùåå fft. Áåðåòñÿ âåêòîð ðàçìåðîì 1+2n-1, ãäå n öåëîå ÷èñëî. Âîçâðàùàåò äåéñòâèòåëüíûé âåêòîð ðàçìåðîì 2n.

96.  IFFT(v) – îáðàòíîå ïðåîáðàçîâàíèå, ñîîòâåòñòâóþùåå FFT. Áåðåòñÿ âåêòîð ðàçìåðîì 1+2n-1, ãäå n öåëîå ÷èñëî. Âîçâðàùàåò äåéñòâèòåëüíûé âåêòîð ðàçìåðîì 2n.

97.  Im(z) – ìíèìàÿ ÷àñòü êîìïëåêñíîãî ÷èñëà z.

98.  In(m, x) – ìîäèôèöèðîâàííàÿ ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà ïîðÿäêà m.

99.  intercept(vx, vy) – êîýôôèöèåíò a ëèíåéíîé ðåãðåññèè y = a + b×x âåêòîðîâ vx è vy (ðèñ. 4.2).

100.           interp(vs, vx, vy, x) – èíòåðïîëèðóåìîå çíà÷åíèå y â òî÷êå x ïî èñõîäíûì âåêòîðàì vx è vy (âåêòîðû èìåþò îäèíàêîâîå ÷èñëî ýëåìåíòîâ) è ïî êîýôôèöèåíòàì ñïëàéíà vs (ðèñ. 4.7).

101.           interp(vs, Mxy, Mz, n) – èíòåðïîëèðóåìîå çíà÷åíèå z, ñîîòâåòñòâóþùåå òî÷êàì õ=n0 è ó=n1. Âåêòîð vs âû÷èñëÿåòñÿ bspline, lspline, pspline, èëè cspline íà îñíîâå äàííûõ èç Mxy è Mz (ìàòðè÷íûå àðãóìåíòû ñ îäèíàêîâûì ÷èñëîì ñòðîê).

102.           IsArray(x)1, åñëè x – ìàòðèöà èëè âåêòîð, 0 – â äðóãèõ ñëó÷àÿõ (ðèñ. 1.30).

103.           IsScalar(x)1, åñëè x – âåùåñòâåííîå èëè êîìïëåêñíîå ÷èñëî, 0 – â äðóãèõ ñëó÷àÿõ (ðèñ. 1.30).

104.           IsString(x)1, åñëè x – òåêñòîâàÿ ïåðåìåííàÿ, 0 – â äðóãèõ ñëó÷àÿõ (ðèñ. 1.30).

105.           iwave(v) – îáðàòíîå âîëíîâîå ïðåîáðàçîâàíèå îòíîñèòåëüíî ïðåîáðàçîâàíèÿ wave. v – âåùåñòâåííûé âåêòîð, ðàçìåðîì 2n (n>0).

106.           J0(x) – ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà íóëåâîãî ïîðÿäêà.

107.           J1(x) – ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà ïåðâîãî ïîðÿäêà.

108.           Jac(n, a, b, x) – ïîëèíîì ßêîáè ñòåïåíè n ñ ïàðàìåòðàìè a è b â òî÷êå x.

109.           Jn(m, x) – ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà ïîðÿäêà m; 0<m<100.

110.           js(n, x) – ñôåðè÷åñêàÿ ôóíêöèÿ Áåññåëÿ ïåðâîãî ðîäà ïîðÿäêà n â òî÷êå x.

111.           K0(x) – ìîäèôèöèðîâàííàÿ ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà íóëåâîãî ïîðÿäêà.

112.           K1(x) – ìîäèôèöèðîâàííàÿ ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà ïåðâîãî ïîðÿäêà.

113.           Kn(m, x) – ìîäèôèöèðîâàííàÿ ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà ïîðÿäêà m; 0<m<100.

114.           ksmooth(vx, vy, b) n-ýëåìåíòíûé âåêòîð âîçâðàùåííûõ ñðåäíèõ vx, âû÷èñëåííûõ íà îñíîâå ðàñïðåäåëåíèÿ Ãàóññà. vx è vyn-ýëåìåíòíûå âåêòîðû äåéñòâèòåëüíûõ ÷èñåë. Ïîëîñà ïðîïóñêàíèÿ b óïðàâëÿåò ñãëàæèâàþùèìè îêíàìè.

115.           kurt(A) – ýêñöåññ ýëåìåíòîâ A.

116.           Lag(n, x) – ïîëèíîì Ëàãåððà ñòåïåíè n â òî÷êå x.

117.           last(v) – èíäåêñ ïîñëåäíåãî ýëåìåíòà âåêòîðà v (ðèñ. ?.?).

118.           lcm(A) – íàèìåíüøåå îáùåå êðàòíîå: íàèìåíüøåå ïîëîæèòåëüíîå öåëîå, äëÿ êîòîðîãî âñå çíà÷åíèÿ ìàññèâà ÿâëÿþòñÿ ñîìíîæèòåëÿìè. Ýëåìåíòû ìàññèâà A äîëæíû áûòü öåëûìè íåîòðèöàòåëüíûìè ÷èñëàìè.

119.           Leg(n, x) – ïîëèíîì Ëåæàíäðà ñòåïåíè n â òî÷êå x.

120.           lenght(v) – ÷èñëî ýëåìåíòîâ â âåêòîðå v (ðèñ. ?.?).

121.           linfit(vx, vy, F) – êîýôôèöèåíòû ëèíåéíîé àïïðîêñèìàöèè ôóíêöèé, õðàíÿùèõñÿ â ñèìâîëüíîì âåêòîðå F; èñõîäíûå òî÷êè õðàíÿòñÿ â âåêòîðàõ vx è vy (ðèñ. 4.5).

122.           linterp(vx, vy, x) – çíà÷åíèå â òî÷êå x ëèíåéíîãî èíòåðïîëÿöèîííîãî ìíîãî÷ëåíà âåêòîðîâ vx è vy (ðèñ. 4.7).

123.           ln(z) – íàòóðàëüíûé ëîãàðèôì äëÿ íåíóëåâîãî âåùåñòâåííîãî ÷èñëà z. Äåéñòâèòåëüíàÿ ÷àñòü (ìíèìàÿ ÷àñòü ìåæäó p è -p) äëÿ êîìïëåêñíîãî z (ðèñ. 4.?).

124.           LoadColormap(file) – ìíîæåñòâî, ñîäåðæàùåå çíà÷åíèÿ öâåòîâîé äèàãðàììû file.

125.           loess(vx, vy, span) – âåêòîð, èñïîëüçóåìûé ôóíêöèåé interp äëÿ íàõîæäåíèÿ ñîâîêóïíîñòè ìíîãî÷ëåíîâ âòîðîé ñòåïåíè, êîòîðûå íàèëó÷øèì îáðàçîì àïïðîêñèìèðóþò ÷àñòü äàííûõ èç âåêòîðîâ vx è vy. Àðãóìåíò span óêàçûâàåò ðàçìåð ÷àñòè àïïðîêñèìèðóåìûõ äàííûõ.

126.           loess(Mxy, vz, span) – âåêòîð, èñïîëüçóåìûé ôóíêöèåé interp äëÿ íàõîæäåíèÿ ñîâîêóïíîñòè ìíîãî÷ëåíîâ âòîðîé ñòåïåíè, êîòîðûå íàèëó÷øèì îáðàçîì àïïðîêñèìèðóþò çàâèñèìîñòü Z(x, y) ïî ìàññèâó Mxy (âåùåñòâåííàÿ ìàòðèöà ðàçìåðîì m´2, ñîäåðæàùàÿ êîîðäèíàòû (x, y) äàííûõ òî÷åê). Çíà÷åíèå Z â ìàññèâå vz.; span óêàçûâàåò ðàçìåð îáëàñòè, íà êîòîðîé âûïîëíÿåòñÿ ëîêàëüíàÿ àïïðîêñèìàöèÿ.

127.           log(z, b) – ëîãàðèôì íåíóëåâîãî âåùåñòâåííîãî ÷èñëà z ïî îñíîâàíèþ b. Äåéñòâèòåëüíàÿ ÷àñòü (ìíèìàÿ ÷àñòü ìåæäó p è -p) äëÿ êîìïëåêñíîãî z. Åñëè b íå çàäàíî – äåñÿòè÷íûé ëîãàðèôì z.

128.           lsolve(M, v) – âåêòîð ðåøåíèÿ ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé âèäà M×x=v (ðèñ 1.7, 1.16, 4.9).

129.           lspline(vx, vy) – âåêòîð êîýôôèöèåíòîâ ëèíåéíîãî ñïëàéíà, ïîñòðîåííîãî ïî âåêòîðàì vx è vy (ðèñ. 4.8).

130.           lspline(Mxy, Mz) – âåêòîð, èñïîëüçóåìûé ôóíêöèåé interp äëÿ èíòåðïîëÿöèè äàííûõ èç Mxy è Mz. Èíòåðïîëèðóþùàÿ ïîâåðõíîñòü èìååò íà ãðàíèöå ñåòêè, îïðåäåëÿåìîé Mxy, ðàâíûå íóëþ ïðîèçâîäíûå âûøå ïåðâîãî ïîðÿäêà.

131.           lu(M) – òðåóãîëüíîå ðàçëîæåíèå ìàòðèöû M: P×M=L×U, ãäå L è U – íèæíÿÿ è âåðõíÿÿ òðåóãîëüíûå ìàòðèöû ñîîòâåòñòâåííî. Âñå ÷åòûðå ìàòðèöû êâàäðàòíûå, îäíîãî ïîðÿäêà.

132.           matrix(m, n, f) – ìàòðèöà, â êîòîðîé (i, j)-é ýëåìåíò ñîäåðæèò f(i, j), ãäå i=0, 1,... m - 1 è j=0, 1,... n - 1.

133.           max(A) – íàèáîëüøèé ýëåìåíò â ìàòðèöå A. Åñëè A – êîìïëåêñ, âîçâðàùàåò max(Re(A))+i×max(Im(A)) (ðèñ. 2.8, 3.14).

134.            Maximize(f, var1, var2,...) çíà÷åíèÿ var1, var2,..., êîòîðûå çàñòàâëÿþò ôóíêöèþ f ïðèíÿòü ñâîå ìàêñèìàëüíîå çíà÷åíèå. Ïîëó÷àåì ñêàëÿð, åñëè òîëüêî îäíà íåèçâåñòíàÿ, â äðóãîì ñëó÷àå – âåêòîð îòâåòà. Ìàêñèìèçàöèÿ ìîæåò ïðîâîäèòüñÿ ñ îãðàíè÷åíèÿìè, êîòîðûå çàïèñûâàþòñÿ ìåæäó êëþ÷åâûì ñëîâîì Given è ôóíêöèåé Maximize (ðèñ. 2.2, 2.5, 2.6, 2.8, 2.9 è 6.33).

135.           mean(A) – àðèôìåòè÷åñêîå ñðåäíåå çíà÷åíèå ýëåìåíòîâ ìàññèâà A, ãäå A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà (âåêòîð) ðàçìåðîì m´n (ðèñ. 3.14).

136.           median(A) – ìåäèàíà ýëåìåíòîâ ìàññèâà A. Ìåäèàíà – ýòî âåëè÷èíà, áîëüøå è ìåíüøå êîòîðîé îäèíàêîâîå ÷èñëî ýëåìåíòîâ. A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà (âåêòîð) ðàçìåðîì m´n.

137.           medsmooth(vy, n)m-ìåðíûé âåêòîð, ñãëàæèâàþùèé vy ìåòîäîì ñêîëüçÿùåé ìåäèàíû. vym-ìåðíûé âåêòîð âåùåñòâåííûõ ÷èñåë. n – øèðèíà îêíà, ïî êîòîðîìó ïðîèñõîäèò ñãëàæèâàíèå.

138.           mhyper(a, b, x) – îáúåäèíåííàÿ (ñëèÿíèå) ãèïåðãåîìåòðè÷åñêàÿ ôóíêöèÿ 1F1(a, b, x) èëè M(a, b, x) ñ ïàðàìåòðàìè a è b â òî÷êå x.

139.           min(A) – íàèìåíüøèé ýëåìåíò â ìàññèâå A. Åñëè A õðàíèò è êîìïëåêñíûå ÷èñëà, òî âîçâðàùàåò min(Re(A))+i×min(Im(A)) (ðèñ. 3.14).

140.           MinErr(var1, var2,...) – âåêòîð çíà÷åíèé äëÿ var1, var2,..., êîòîðûå ïðèâîäÿò ê ìèíèìàëüíîé îøèáêå â ñèñòåìå óðàâíåíèé è íåðàâåíñòâ, íà÷èíàþùèõñÿ îò êëþ÷åâîãî ñëîâà Given. ×èñëî íåèçâåñòíûõ ðàâíî ÷èñëó àðãóìåíòîâ. Âîçâðàùàåò ñêàëÿð, åñëè òîëüêî îäèí àðãóìåíò, â äðóãîì ñëó÷àå – âåêòîð îòâåòà (ðèñ. 2.4, 2.7, 2.8, 3.3, 3.4, 3.5).

141.           Minimize(f, var1, var2,...) – çíà÷åíèÿ var1, var2,..., êîòîðûå çàñòàâëÿþò ôóíêöèþ f ïðèíÿòü ñâîå ìèíèìàëüíîå çíà÷åíèå. Ïîëó÷àåì ñêàëÿð, åñëè òîëüêî îäíà íåèçâåñòíàÿ, â äðóãîì ñëó÷àå – âåêòîð îòâåòà.. Ìèíèìèçàöèÿ ìîæåò ïðîâîäèòñÿ ñ îãðàíè÷åíèÿìè, êîòîðûå çàïèñûâàþòñÿ ìåæäó êëþ÷åâûì ñëîâîì Given è ôóíêöèåé Minimize (ðèñ. 2.7, 2.8, 2.10, 3.3 è 3.4).

142.           mod(n, k) – îñòàòîê îò äåëåíèÿ n íà k (n, k – öåëûå ÷èñëà). Àðãóìåíòû äîëæíû áûòü äåéñòâèòåëüíûìè. Ðåçóëüòàò èìååò òàêîé æå çíàê, êàê è n.

143.           mode(A) – çíà÷åíèå â ìàññèâå A, êîòîðîå âñòðå÷àåòñÿ íàèáîëåå ÷àñòî.

144.           multigrid(M, ncycle) – ìàòðèöà ðåøåíèÿ óðàâíåíèÿ Ïóàññîíà, ãäå ðåøåíèå ðàâíî íóëþ íà ãðàíèöàõ.

145.           norm1(M)L1 íîðìà ìàòðèöû M.

146.           norm2(M) L2 íîðìà ìàòðèöû M.

147.           norme(M) – åâêëèäîâà íîðìà ìàòðèöû M.

148.           normi(M) – íåîïðåäåëåííàÿ íîðìà ìàòðèöû M.

149.           num2str(z) – òåêñòîâûå ïåðåìåííûå, ÷üÿ õàðàêòåðèñòèêà ñîîòâåòñòâóåò äåñÿòè÷íîìó çíà÷åíèþ z (ðèñ. 1.30).

150.           pbeta(x,s1,s2) – çíà÷åíèå â òî÷êå x ôóíêöèè ñòàíäàðòíîãî b-ðàñïðåäåëåíèÿ ñ ïàðàìåòðàìè ôîðìû s1, s2 (0<x<1, s1>0, s2>0).

151.           pbinom(k, n, p) – ôóíêöèÿ áèíîìèàëüíîãî ðàñïðåäåëåíèÿ äëÿ k óñïåõîâ â ñåðèè n èñïûòàíèé (k – öåëîå, 0£k£n, p – âåùåñòâåííîå ÷èñëî, 0£p£1).

152.           pcauchy(x, l, s) – çíà÷åíèå â òî÷êå x ðàñïðåäåëåíèÿ Êîøè ñî øêàëîé ïàðàìåòðîâ l è s (s>0).

153.           pchisq(x, d) – çíà÷åíèå â òî÷êå x c-êâàäðàò-ðàñïðåäåëåíèÿ, â êîòîðîì d – ñòåïåíü ñâîáîäû (x – âåùåñòâåííîå, x³0).

154.           permut(n, k) – ÷èñëî ïóòåé ïîðÿäêà n òî÷íûõ îáúåêòîâ k, âçÿòûõ îäíîâðåìåííî. N è k – öåëûå ÷èñëà (0£k£n).

155.           pexp(x, r) – çíà÷åíèå â òî÷êå x ýêñïîíåíöèàëüíîãî ðàñïðåäåëåíèÿ.

156.           pF(x, d1, d2) – çíà÷åíèå â òî÷êå x ðàñïðåäåëåíèÿ Ôèøåða.

157.           pgamma(x, s) – çíà÷åíèå â òî÷êå x g-ðàñïðåäåëåíèÿ.

158.           pgeom(k, p) Pr(X£k), ãäå X – ñëó÷àéíàÿ âåëè÷èíà, èìåþùàÿ ãåîìåòðè÷åñêîå ðàñïðåäåëåíèå ñ ïàðàìåòðîì p.

159.           phypergeom(m, a, b, n)Pr(X£m), ãäå X – ñëó÷àéíàÿ âåëè÷èíà, èìåþùàÿ ãåîìåòðè÷åñêîå ðàñïðåäåëåíèå ñ ïàðàìåòðàìè a, b è n.

160.           plnorm(x, m, s) – çíà÷åíèå â òî÷êå x ëîãíîðìàëüíîãî ðàñïðåäåëåíèÿ, â êîòîðîì m – ëîãàðèôì ñðåäíåãî çíà÷åíèÿ, s>0 – ëîãàðèôì ñòàíäàðòíîãî îòêëîíåíèÿ.

161.           plogis(x, l, s) – çíà÷åíèå â òî÷êå x ïîñëåäîâàòåëüíîãî ðàñïðåäåëåíèÿ, ãäå l – ïàðàìåòð ïîëîæåíèÿ; s>0 – ïàðàìåòð øêàëû.

162.           pnbinom(k, n, p) – çíà÷åíèå â òî÷êå x îòðèöàòåëüíîãî áèíîìèàëüíîãî ðàñïðåäåëåíèÿ, â êîòîðîì n>0 è 0<p£1.

163.           pnorm(x, m, s) – çíà÷åíèå â òî÷êå x íîðìàëüíîãî ðàñïðåäåëåíèÿ ñî ñðåäíèì çíà÷åíèåì m è ñòàíäàðòíûì îòêëîíåíèåì s>0.

164.           polyroots(v) – (n+1) ýëåìåíòíûé âåêòîð êîðíåé ìíîãî÷ëåíà ñòåïåíè n, êîýôôèöèåíòû ìíîãî÷ëåíà íàõîäÿòñÿ â âåêòîðå v (ðèñ 1.11, 3.1, 3.3).

165.           ppois(k, l) – çíà÷åíèå â òî÷êå x ðàñïðåäåëåíèÿ Ïóàññîíà (k³0, l>0).

166.           predict(v, m, n) – ïðîãíîç. Âåêòîð, ñîäåðæàùèé ðàâíîîòñòîÿùèå ïðåäñêàçàííûå çíà÷åíèÿ n ïåðåìåííûõ, âû÷èñëåííûõ ïî m çàäàííûì â âåêòîðå v äàííûì (ðèñ. 4.14).

167.           pspline(vx, vy) – âåêòîð êîýôôèöèåíòîâ ïàðàáîëè÷åñêîãî ñïëàéíà, ïîñòðîåííîãî ïî âåêòîðàì vx è vy. Ïîëó÷åííûé âåêòîð ñòàíîâèòñÿ ïåðâûì àðãóìåíòîì äëÿ ôóíêöèè interp (ðèñ. 4.8).

168.           pspline(Mxy, Mz) – âåêòîð âòîðûõ ïðîèçâîäíûõ äëÿ äàííûõ Mxy è Mz. Ýòîò âåêòîð ñòàíîâèòñÿ ïåðâûì àðãóìåíòîì â ôóíêöèè interp. Ðåçóëüòèðóþùàÿ ïîâåðõíîñòü ÿâëÿåòñÿ ïàðàáîëè÷åñêîé â ãðàíèöàõ îáëàñòè, îãðàíè÷åííîé õîðäîé Mxy.

169.           pt(x, d) – çíà÷åíèå â òî÷êå x ðàñïðåäåëåíèÿ Ñòüþäåíòà, ãäå d – ñòåïåíü ñâîáîäû; x>0 è d>0.

170.           punif(x, a, b) – çíà÷åíèå â òî÷êå x ðàâíîìåðíîãî ðàñïðåäåëåíèÿ, ãäå b è a – ãðàíèöû èíòåðâàëà (a<b).

171.           pweibull(x, s) – çíà÷åíèå â òî÷êå x ðàñïðåäåëåíèÿ Âåéáóëëà (s>0).

172.           qbeta(p, s1, s2) – êâàíòèëè îáðàòíîãî áåòà-ðàñïðåäåëåíèÿ ñ ïàðàìåòðàìè ôîðìû s1 è s2 (0£p£1 è s1, s2>0).

173.           qbinom(p,n,q) – ôóíêöèÿ îáðàòíîãî áèíîìèíàëüíîãî ðàñïðåäåëåíèÿ, òî åñòü íàèìåíüøåå öåëîå k, òàêîå ÷òî pnbinom(k, n, p)³p (0£q£1 è 0£p£1).

174.           qcauchy(p, l, s) – ôóíêöèÿ îáðàòíîãî ðàñïðåäåëåíèÿ Êîøè ñî øêàëîé ïàðàìåòðîâ l è s (s>0 è 0<p<1).

175.           qchisq(p, d) – ôóíêöèÿ îáðàòíîãî c-êâàäðàò-ðàñïðåäåëåíèÿ, ïðè êîòîðîì d>0; õàêòåðèñòèêà ñòåïåíåé ñâîáîäû (0£p<1).

176.           qexp(p, r) – ôóíêöèÿ îáðàòíîãî ýêñïîíåíöèàëüíîãî ðàñïðåäåëåíèÿ, ïðè êîòîðîì r>0 îïðåäåëÿåò ÷àñòîòó (0£p<1).

177.           qF(p, d1, d2) – ôóíêöèÿ îáðàòíîãî ðàñïðåäåëåíèÿ Ôèøåðà, â êîòîðîì d1 è d2 – ñòåïåíè ñâîáîäû (d1, d2>0, 0£p<1).

178.           qgamma(p, s) – ôóíêöèÿ îáðàòíîãî g-ðàñïðåäåëåíèÿ, ïðè êîòîðîì s>0 – ïàðàìåòðû ôîðìû (0£p<1).

179.           qgeom(p, q) – ôóíêöèÿ îáðàòíîãî ãåîìåòðè÷åñêîãî ðàñïðåäåëåíèÿ, òî åñòü íàèìåíüøåå öåëîå k, òàêîå ÷òî qgeom(p, q)³p (0£q£1 è 0£p£1).

180.           qhypergeom(p, a, b, n) – ôóíêöèÿ îáðàòíîãî ãèïåðãåîìåòðè÷åñêîãî ðàñïðåäåëåíèÿ, òî åñòü íàèìåíüøåå öåëîå k, òàêîå ÷òî qhypergeom(p, a, b, n)³p (0£a, 0£b, 0£n£(a+b) è 0£p£1).

181.           qlnorm(p, m, s) – ôóíêöèÿ îáðàòíîãî ëîãíîðìàëüíîãî ðàñïðåäåëåíèÿ, ïðè êîòîðîì m – ëîãàðèôì ñðåäíåãî ÷èñëà. s>0 – ëîãàðèôì ñòàíäàðòíîãî îòêëîíåíèÿ (0£p<1).

182.           qlogis(p, l, s) – ôóíêöèÿ îáðàòíîãî ïîñëåäîâàòåëüíîãî ðàñïðåäåëåíèÿ, ãäå l – ïàðàìåòð ïîëîæåíèÿ; s>0 – ïàðàìåòð øêàëû (0<p<1).

183.           qnbinom(p, n, q) – ôóíêöèÿ îáðàòíîãî îòðèöàòåëüíîãî áèíîìèàëüíîãî ðàñïðåäåëåíèÿ, òî åñòü íàèìåíüøåå öåëîå k, òàêîå ÷òî qnbinom(p, n, q)³p (0<n, 0<p<1, 0<q<1).

184.           qnorm(p, m, s) – ôóíêöèÿ îáðàòíîãî íîðìàëüíîãî ðàñïðåäåëåíèÿ ñî ñðåäíèì çíà÷åíèåì m è ñòàíäàðòíûì îòêëîíåíèåì s (0<p<1 è s>0).

185.           qpois(p, l) – ôóíêöèÿ îáðàòíîãî ðàñïðåäåëåíèÿ Ïóàññîíà, òî åñòü íàèìåíüøåå öåëîå k, òàêîå ÷òî qpois(p, l)³p (l>0 è 0£p£1).

186.           qr(A) – ðàçëîæåíèå ìàòðèöû A, A=Q×R, ãäå Q – îðòîãîíàëüíàÿ ìàòðèöà è R – âåðõíÿÿ òðåóãîëüíàÿ ìàòðèöà.

187.           qt(p, d) – ôóíêöèÿ îáðàòíîãî ðàñïðåäåëåíèÿ Ñòüþäåíòà, ãäå d îïðåäåëÿåò ñòåïåíè ñâîáîäû (d>0 è 0<p<1).

188.           qunif(p, a, b) – ôóíêöèÿ îáðàòíîãî ðàâíîìåðíîãî ðàñïðåäåëåíèÿ. b è a – êîíå÷íûå çíà÷åíèÿ èíòåðâàëà (a<b è 0£p£1).

189.           qweibull(p, s) – ôóíêöèÿ îáðàòíîãî ðàñïðåäåëåíèÿ Âåéáóëëà (s>0 è 0<p<1).

190.           rank(A) – ðàíã ìàòðèöû A. Ìàêñèìàëüíîå ÷èñëî ëèíåéíî íåçàâèñèìûõ ñòîëáöîâ â A.

191.           rbeta(m, s1, s2) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ b-ðàñïðåäåëåíèå. s1, s2 (áîëüøå íóëÿ) – ïàðàìåòðû ôîðìû.

192.           rbinom(m, n, p) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ áèíîìèàëüíîå ðàñïðåäåëåíèå (0£p£1, n – öåëîå ÷èñëî, óäîâëåòâîðÿþùåå óñëîâèþ n>0).

193.           rcauchy(m, l, s) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ðàñïðåäåëåíèå Êîøè. l è s>0 – ïàðàìåòðû øêàëû.

194.           rchisq(m, d) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ c-êâàäðàò-ðàñïðåäåëåíèå. d>0 îïðåäåëÿåò ñòåïåíè ñâîáîäû.

195.           Re(z) – äåéñòâèòåëüíàÿ ÷àñòü êîìïëåêñíîãî ÷èñëà z (2).

196.           READ_BLUE(file) – ìàòðèöà, ñîäåðæàùàÿ òîëüêî ñèíèé öâåò êîìïîíåíòà, ñîäåðæàùåãîñÿ â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READRGB(file).

197.           READBMP(file) – ìàòðèöà, ñîäåðæàùàÿ ÷åðíî-áåëîå ïðåäñòàâëåíèå èçîáðàæåíèÿ, ðàñïîëîæåííîãî â ôàéëå file. Êàæäûé ýëåìåíò ìàòðèöû ñîîòâåòñòâóåò îäíîìó ïèêñåëó. Êàæäûé ýëåìåíò – öåëîå ÷èñëî îò 0 (÷åðíûé) äî 255 (áåëûé).

198.           READ_GREEN(file) – ìàòðèöà, ñîäåðæàùàÿ òîëüêî çåëåíûé öâåò êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READRGB(file).

199.           READ_HLS(file) – ìàòðèöà, â êîòîðîé öâåòîâàÿ èíôîðìàöèÿ, ñîäåðæàùàÿñÿ â ôàéëå file, ïðåäñòàâëåíà ñîîòâåòñòâóþùèìè çíà÷åíèÿìè îòòåíêà öâåòà, ÿðêîñòüþ, è íàñûùåííîñòüþ. File èìååò BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò.

200.           READ_HLS_HUE(file) – ìàòðèöà, ñîäåðæàùàÿ òîëüêî öâåòîâûå îòòåíêè êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READ_HLS(file).

201.           READ_HLS_LIGHT(file) – ìàòðèöà, ñîäåðæàùàÿ òîëüêî ÿðêîñòü öâåòîâîãî êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READ_HLS(file).

202.           READ_HLS_SAT(file) – ìàòðèöà, ñîäåðæàùàÿ òîëüêî íàñûùåííîñòü öâåòîâîãî êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READ_HLS(file).

203.           READ_HSV(file) – ìàòðèöà, â êîòîðîé öâåòîâàÿ èíôîðìàöèÿ, ñîäåðæàùàÿñÿ â ôàéëå file, ïðåäñòàâëåíà ñîîòâåòñòâóþùèìè çíà÷åíèÿìè îòòåíêà öâåòà, íàñûùåííîñòè è âåëè÷èíû. File èìååò BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò.

204.           READ_HSV_HUE(file) – ìàòðèöà, ñîîòâåòñòâóþùàÿ îòòåíêó öâåòîâîãî êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READ_HSV(file).

205.           READ_HSV_SAT(file) – ìàòðèöà, ñîîòâåòñòâóþùàÿ òîëüêî íàñûùåííîñòè öâåòîâîãî êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READ_HSV(file).

206.           READ_HSV_VALUE(file) – ìàòðèöà, ñîîòâåòñòâóþùàÿ âåëè÷èíå öâåòîâîãî êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READ_HSV(file).

207.           READ_IMAGE(file) – ìàòðèöà, ñîäåðæàùàÿ ÷åðíî-áåëîå ïðåäñòàâëåíèå, ñîäåðæàùååñÿ â ôàéëå file. Êàæäûé ýëåìåíò ìàòðèöû ñîîòâåòñòâóåò îäíîìó ïèêñåëó. Êàæäûé ýëåìåíò – öåëîå ÷èñëî îò 0 (÷åðíûé) äî 255 (áåëûé). file ìîæåò áûòü â BMP-, GIF-, JPG- èëè TGA-öâåòîâîì ôîðìàòå.

208.           READPRN(file) – ïðèñâàèâàíèå ìàòðèöå çíà÷åíèé èç ôàéëà ñ èìåíåì READPRN(file).

209.           READ_RED(file) – ìàòðèöà, ñîîòâåòñòâóþùàÿ òîëüêî êðàñíîìó öâåòó êîìïîíåíòà, ðàñïîëîæåííîãî â ôàéëå file, èìåþùåì BMP-, GIF-, JPG- èëè TGA-öâåòîâîé ôîðìàò. Ïîëó÷åííàÿ ìàòðèöà ñîäåðæèò òðåòü îò ÷èñëà ñòîëáöîâ ìàòðèöû, âîçâðàùåííîé ôóíêöèåé READRGB(file).

210.           READRGB(file) – ìàòðèöà, ñîñòîÿùàÿ èç òðåõ ïîäìàòðèö, êîòîðûå ïðåäñòàâëÿþò êðàñíûé, çåëåíûé è ñèíèé êîìïîíåíòû öâåòíîãî èçîáðàæåíèÿ, íàõîäÿùåãîñÿ â ôàéëå file.

211.           regress(vx, vy, n) – âîçâðàùàåò âåêòîð, òðåáóþùèé interp, ÷òîáû íàéòè ïîëèíîì ïîðÿäêà n, êîòîðûé íàèëó÷øèì îáðàçîì ïðèáëèæàåò äàííûå èç vx è vy. vx m-ýëåìåíòíûé âåêòîð, ñîäåðæàùèé êîîðäèíàòû x. vym-ýëåìåíòíûé âåêòîð, ñîäåðæàùèé êîîîðäèíàòû y, ñîîòâåòñòâóþùèå m òî÷êàì, îïðåäåëåííûì â vx.

212.           regress(Mxy,vz,n) – âåêòîð, çàïðàøèâàåìûé ôóíêöèåé interp äëÿ âû÷èñëåíèÿ ìíîãî÷ëåíà n-é ñòåïåíè, êîòîðûé íàèëó÷øèì îáðàçîì ïðèáëèæàåò ìíîæåñòâà Mxy è vz. Mxy – ìàòðèöà m´2, ñîäåðæàùàÿ êîîðäèíàòû (x;y) m äàííûõ òî÷åê. vz m-ýëåìåíòíûé âåêòîð, ñîäåðæàùèé z êîîðäèíàò, ñîîòâåòñòâóþùèõ m òî÷êàì, óêàçàííûì â Mxy.

213.           relax(A,B, C, D, E, F, U, rjac) – êâàäðàòíàÿ ìàòðèöà ðåøåíèÿ óðàâíåíèÿ Ïóàññîíà.

214.           reverse(v) – ïîðÿäîê ýëåìåíòîâ âåêòîðà v.

215.           reverse(A) – ïîðÿäîê ñòðîê ìàòðèöû A.

216.           rexp(m, r) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ýêñïîíåíöèàëüíîå ðàñïðåäåëåíèå. r>0 ÿâëÿåòñÿ ÷àñòîòîé.

217.           rF(m, d1, d2) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ðàñïðåäåëåíèå Ôèøåðà. d1>0, d2>0 – ñòåïåíè ñâîáîäû.

218.           rgamma(m, s) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ g-ðàñïðåäåëåíèå. s>0 – ïàðàìåòð ôîðìû.

219.           rgeom(m, p) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ãåîìåòðè÷åñêîå ðàñïðåäåëåíèå (0<p£1).

220.           rhypergeom(m, a, b, n) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ãèïåðãåîìåòðè÷åñêîå ðàñïðåäåëåíèå (a³0, b³0, 0£n£(a+b)).

221.           rkadapt(y, x1, x2, acc, D, kmax, save) – ìàòðèöà, ñîäåðæàùàÿ çíà÷åíèÿ ðåøåíèÿ çàäà÷è Êîøè íà èíòåðâàëå îò x1 äî x2 äëÿ ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé, âû÷èñëåííûõ ìåòîäîì Ðóíãå ¾ Êóòòû ñ ïåðåìåííûì øàãîì; y – âåùåñòâåííûé âåêòîð íà÷àëüíûõ çíà÷åíèé. Kmax – ìàêñèìàëüíîå ÷èñëî ïðîìåæóòî÷íûõ òî÷åê, ïî êîòîðûì äîëæíî áûòü àïïðîêñèìèðîâàíî ðåøåíèå. Save – íàèìåíüøåå äîïóñòèìîå ïðîñòðàíñòâî ìåæäó âåëè÷èíàìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå. D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé.

222.           Rkadapt(v, x1, x2, npts, D) – ìàòðèöà ðåøåíèé ìåòîäîì Ðóíãå ¾ Êóòòû (ñ ïåðåìåííûì øàãîì) ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé (ïî èíòåðâàëó îò x1 äî x2); y – âåùåñòâåííûé âåêòîð íà÷àëüíûõ çíà÷åíèé. Npts – êîëè÷åñòâî òî÷åê, íå ÿâëÿþùèõñÿ èçíà÷àëüíûìè ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå. D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé.

223.           rkfixed(y, x1, x2, npts, D) – ìàòðèöà ðåøåíèé ìåòîäîì Ðóíãå ¾ Êóòòû ñèñòåìû îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé (ïî èíòåðâàëó îò x1 äî x2); y – âåùåñòâåííûé âåêòîð íà÷àëüíûõ çíà÷åíèé. npts – êîëè÷åñòâî òî÷åê, íå ÿâëÿþùèõñÿ èçíà÷àëüíûìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå. D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé (ðèñ. 5.2).

224.           rlnorm(m, m, s)– âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ëîãíîðìàëüíîå ðàñïðåäåëåíèå, â êîòîðîì m – ëîãàðèôì ñðåäíåãî çíà÷åíèÿ. s>0 – ëîãàðèôì ñòàíäàðòíîãî îòêëîíåíèÿ.

225.           rlogis(m, l, s) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ïîñëåäîâàòåëüíîå ðàñïðåäåëåíèå, â êîòîðîì l – ëîêàëèçàöèîííûé ïàðàìåòð è s>0 – ïàðàìåòð øêàëû.

226.           rnbinom(m, n, p) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ îòðèöàòåëüíîå áèíîìèàëüíîå ðàñïðåäåëåíèå (0<p£1). n – öåëîå ÷èñëî, êîòîðîå óäîâëåòâîðÿåò óñëîâèþ n>0.

227.           rnd(x) – ïñåâäîñëó÷àéíîå ÷èñëî â äèàïàçîíå îò íóëÿ äî x (ðèñ. 3.6, 3.7, 6.9).

228.           rnorm(m, m, s) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ íîðìàëüíîå ðàñïðåäåëåíèå (s>0).

229.           root(f(var), var) – çíà÷åíèå ïåðåìåííîé var, ïðè êîòîðîì âûðàæåíèå f(var) ðàâíî íóëþ (ðèñ 1.10, 2.3, 2.7, 3.1).

230.           round(x) – îêðóãëåíèå âåùåñòâåííîãî x äî öåëîãî ÷èñëà.

231.           rows(A) – ÷èñëî ñòðîê â ìàññèâå A, ãäå A – ìàòðèöà èëè âåêòîð (ðèñ. 4.10).

232.           rpois(m, l) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ðàñïðåäåëåíèå Ïóàññîíà (l>0).

233.           rref(A) – ñòóïåí÷àòûé âèä âåùåñòâåííîé ìàòðèöû A.

234.           rsort(A, i) – ñîðòèðîâêà ñòîëáöîâ ìàòðèöû A ïî ðàñïîëîæåíèþ ýëåìåíòîâ â ñòðîêå i (ïåðåñòàíîâêà ñòîëáöîâ ïî âîçðàñòàíèþ çíà÷åíèé ýëåìåíòîâ â ñòðîêå i). Ïîëó÷èì ìàòðèöó òàêîãî æå ðàçìåðà, êàê A (0£i£(m-1)).

235.           rt(m, d) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ðàñïðåäåëåíèå Ñòüþäåíòà. d>0 – ñòåïåíü ñâîáîäû.

236.           runif(m, a, b) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ðàâíîìåðíîå ðàñïðåäåëåíèå, â êîòîðîì b è a – ãðàíèöû èíòåðâàëà è a<b.

237.           rweibull(m,S) – âåêòîð m ñëó÷àéíûõ ÷èñåë, èìåþùèõ ðàñïðåäåëåíèå Âåéáóëëà, â êîòîðîì S>0 – ïàðàìåòð ôîðìû.

238.           SaveColormap(file, M) – öâåòîâàÿ äèàãðàììà file, ñîäåðæàùàÿ çíà÷åíèÿ ìàòðèöû M, âîçâðàùàåò êîëè÷åñòâî ñòðîê, íàïèñàííûõ â file.

239.           sbval(v, x1, x2, D, load, score) – óñòàíîâêà íà÷àëüíûõ óñëîâèé äëÿ êðàåâîé çàäà÷è, D – âåùåñòâåííûé n-ýëåìåíòíûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. Âåêòîð v – íà÷àëüíûå óñëîâèÿ ïî èíòåðâàëó (x1, x2). Load(x1, v) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, n ýëåìåíòîâ êîòîðîãî àíàëîãè÷íû çíà÷åíèÿì n íåèçâåñòíûõ ôóíêöèé â òî÷êå x1. Score(x2, y) – âåùåñòâåííûé n-ýëåìåíòíûé âåêòîð çíà÷åíèé ôóíêöèè c èçìåðåííûì ðàçëè÷èåì, âû÷èñëåííûì â òî÷êå x2 (ðèñ. 5.5).

240.           search(S, SubS, m) – íà÷àëüíîå ïîëîæåíèå òåêñòîâîé ïîäïåðåìåííîé SubS â S íà÷èíàÿ ñ ïîçèöèè m. Âîçâðàùàåò ìèíóñ åäèíèöó, åñëè òåêñòîâàÿ ïîäïåðåìåííàÿ íå íàéäåíà (ðèñ. 1.30).

241.           sec(z) – ñåêàíñ z (â ðàäèàíàõ).

242.           sech(z) – ãèïåðáîëè÷åñêèé ñåêàíñ z.

243.           sign(x) – âîçðàùàåò 0, åñëè x=0, 1 – åñëè x>0, ìèíóñ åäèíèöóâ äðóãèõ ñëó÷àÿõ (x – âåùåñòâåííîå ÷èñëî).

244.           signum(z) – âîçâðàùàåò 1 – åñëè z=0, è z/|z| â äðóãèõ ñëó÷àÿõ (z – êîìïëåêñíîå ÷èñëî) (ðèñ. 7.13).

245.           sin(z) – ñèíóñ z (ðèñ 1.15, 1,16, 1,29).

246.           sinh(z) – ãèïåðáîëè÷åñêèé ñèíóñ z.

247.           skew(A) – êîýôôèöèåíò àñèììåòðèè ìàññèâà A, ãäå A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà (âåêòîð) ðàçìåðà m´n, m×n³3.

248.           slope(vx, vy) – êîýôôèöèåíò a ëèíåéíîé ðåãðåññèè y = a×x + b âåêòîðîâ vx è vy (vx è vy èìåþò îäèíàêîâûé ðàçìåð – ðèñ. 4.2).

249.           sort(v) – ñîðòèðîâêà ýëåìåíòîâ âåêòîðà v ïî âîçðàñòàíèþ èõ çíà÷åíèÿ.

250.           stack(A, B) – ìàòðèöà, ñôîðìèðîâàííàÿ ïóòåì ðàñïîëîæåíèÿ A íàä B. Ìàòðèöû (èëè âåêòîðû) A, B äîëæíû èìåòü îäèíàêîâîå ÷èñëî ñòîëáöîâ (ðèñ. 6.9).

251.           stderr(vx, vy) – ñòàíäàðòíàÿ îøèáêà, ñâÿçàííàÿ ñ ëèíåéíîé ðåãðåññèåé, ïîêàçûâàþùåé, íàñêîëüêî äàííûå òî÷êè ðàçáðîñàíû îòíîñèòåëüíî ëèíèè ðåãðåññèè.

252.           stdev(A) – ñòàíäàðòíîå îòêëîíåíèå ýëåìåíòîâ ìàññèâà A, ãäå A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà (âåêòîð) ðàçìåðà m´n. m´n-1 èñïîëüçóåòñÿ â çíàìåíàòåëå (äåëèòåëå): Stdev(A) = Ö var(A).

253.           Stdev(A) – ñòàíäàðòíîå îòêëîíåíèå ýëåìåíòîâ A, ãäå A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà (âåêòîð) ðàçìåðà m´n. m´n-1 èñïîëüçóåòñÿ â çíàìåíàòåëå (äåëèòåëå): Stdev(A) = Ö Var(A).

254.           stiffb(y, x1, x2, acc, D, J, kmax, save) – ìàòðèöà ðåøåíèé æåñòêîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ ñ èñïîëüçîâàíèåì ìåòîäà Bulirsch-Stoer; y – âåêòîð íà÷àëüíûõ çíà÷åíèé íà èíòåðâàëå (x1, x2); D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. J(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, âîçâðàùàþùèé ìàòðèöó ðàçìåðîì n´(n+1), â ïåðâîì ñòîëáöå êîòîðîé ñîäåðæàòñÿ ÷àñòíûå ïðîèçâîäíûå D ïî x, à â îñòàëüíûõ ñòîëáöàõ – ÷àñòíûå ïðîèçâîäíûå D ïî y. Kmax – ìàêñèìàëüíîå ÷èñëî ïðîìåæóòî÷íûõ òî÷åê, ïî êîòîðûì äîëæíî áûòü àïïðîêñèìèðîâàíî ðåøåíèå. Save – íàèìåíüøåå äîïóñòèìîå ïðîñòðàíñòâî ìåæäó âåëè÷èíàìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå. D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé.

255.           Stiffb(y, x1, x2, npts, D, J) – ìàòðèöà ðåøåíèé æåñòêîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ ñ èñïîëüçîâàíèåì ìåòîäà Bulirsch-Stoer; y – âåêòîð íà÷àëüíûõ çíà÷åíèé ïî èíòåðâàëó (x1, x2); D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. J(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, âîçâðàùàþùèé ìàòðèöó ðàçìåðîì n´(n+1), â ïåðâîì ñòîëáöå êîòîðîé ñîäåðæàòñÿ ÷àñòíûå ïðîèçâîäíûå D ïî x, à â îñòàëüíûõ ñòîëáöàõ – ÷àñòíûå ïðîèçâîäíûå D ïî y. Npts – êîëè÷åñòâî òî÷åê, íå ÿâëÿþùèõñÿ èçíà÷àëüíûìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå.

256.           stiffr(ó, x1, x2, acc, D, J, kmax, save) – ìàòðèöà ðåøåíèé æåñòêîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ ñ èñïîëüçîâàíèåì ìåòîäà Ðîçåíáðîêà; y – âåêòîð íà÷àëüíûõ çíà÷åíèé ïî èíòåðâàëó (x1, x2); D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. J(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, âîçâðàùàþùèé ìàòðèöó ðàçìåðîì n´(n+1), â ïåðâîì ñòîëáöå êîòîðîé ñîäåðæàòñÿ ÷àñòíûå ïðîèçâîäíûå D ïî x, à â îñòàëüíûõ ñòîëáöàõ – ÷àñòíûå ïðîèçâîäíûå D ïî y. Kmax – ìàêñèìàëüíîå ÷èñëî ïðîìåæóòî÷íûõ òî÷åê, ïî êîòîðûì äîëæíî áûòü àïïðîêñèìèðîâàíî ðåøåíèå. Save – íàèìåíüøåå äîïóñòèìîå ïðîñòðàíñòâî ìåæäó âåëè÷èíàìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå. D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé.

257.           Stiffr(y, x1, x2, npts, D, J) – ìàòðèöà ðåøåíèé æåñòêîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ ñ èñïîëüçîâàíèåì ìåòîäà Ðîçåíáðîêà; y – âåêòîð íà÷àëüíûõ çíà÷åíèé ïî èíòåðâàëó (x1, x2); D(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, ñîäåðæàùèé ïðîèçâîäíûå (ïî y) íåèçâåñòíûõ ôóíêöèé. J(x, y) – âåùåñòâåííûé âåêòîð çíà÷åíèé ôóíêöèè, âîçâðàùàþùèé ìàòðèöó ðàçìåðîì n´(n+1), â ïåðâîì ñòîëáöå êîòîðîé ñîäåðæàòñÿ ÷àñòíûå ïðîèçâîäíûå D ïî x, à â îñòàëüíûõ ñòîëáöàõ – ÷àñòíûå ïðîèçâîäíûå D ïî y. Npts – êîëè÷åñòâî òî÷åê, íå ÿâëÿþùèõñÿ èçíà÷àëüíûìè, ïî êîòîðûì àïïðîêñèìèðîâàíî ðåøåíèå.

258.           str2num(S) – ïîñòîÿííàÿ, îáðàçîâàííàÿ ïóòåì îáðàùåíèÿ çíàêîâ èç S â ÷èñëî. Çíàêè â S äîëæíû ñîñòàâëÿòü ðåàëüíîå (èëè êîìïëåêñíîå) ÷èñëî ñ ïëàâàþùåé çàïÿòîé èëè ÷èñëî ñ e-ôîðìàòîì. Ïðîáåëû â òåêñòîâîé ïåðåìåííîé èãíîðèðóþòñÿ (ðèñ. 1.30).

259.           str2vec(S) – âåêòîð ñ ASCll-êîäàìè, ñîîòâåòñòâóþùèìè çíà÷åíèÿì òåêñòîâîé ïåðåìåííîé S (ðèñ. 1.30).

260.           strlen(S) – ÷èñëî çíàêîâ â òåêñòîâîé ïåðåìåííîé S (ðèñ. 1.30).

261.           submatrix(A, ir, jr, ic, jc) – ïîäìàòðèöà A, ñîñòîÿùàÿ èç ýëåìåíòîâ, îáùèõ äëÿ ñòðîê îò ir äî jr è ñòîëáöîâ îò ic äî jc. Äëÿ òîãî ÷òîáû ñîõðàíèòü ïîðÿäîê ñòðîê è (èëè) ñòîëáöîâ, íóæíî áûòü óâåðåííûì, ÷òî ir£jr è ic£jc, â ïðîòèâíîì ñëó÷àå ïîðÿäîê ñòðîê è (èëè) ñòîëáöîâ áóäåò èçìåíåí (ðèñ. 4.10).

262.           substr(S, m, n) – òåêñòîâàÿ ïîäïåðåìåííóþ S, íà÷èíàþùàÿñÿ ñî çíàêîâ â ïîçèöèè m è èìåþùàÿ ñàìîå áîëüøåå n çíàêîâ (m, n³0) (ðèñ. 1.30).

263.           supsmoot(vx, vy) n-ìåðíûé âåêòîð, ñãëàæèâàþùèé çàâèñèìîñòü y îò x. Çíà÷åíèÿ y è x â âåêòîðàõ vy è vx (vx, vy – n-ýëåìåíòíûå âåêòîðû) (ðèñ. 4.15).

264.           svd(A) – ñèíãóëÿðíîå ðàçëîæåíèå ìàòðèöû A ðàçìåðîì n´m: A=U×S×VT, ãäå U è V – îðòîãîíàëüíûå ìàòðèöû ðàçìåðîì m´m è n´×n ñîîòâåòñòâåííî. S – äèàãîíàëüíàÿ ìàòðèöà, íà äèàãîíàëè – ñèíãóëÿðíûå ÷èñëà ìàòðèöû A.

265.           svds(A) – âåêòîð, ñîäåðæàùèé ñèíãóëÿðíûå ÷èñëà ìàòðèöû A, èìåþùåé ðàçìåð m´n, ãäå m³n.

266.           tan(z) – òàíãåíñ z (â ðàäèàíàõ).

267.           tanh(z) – ãèïåðáîëè÷åñêèé òàíãåíñ z.

268.           Tcheb(n, x) – ïîëèíîì ×åáûøåâà ïåðâîãî ðîäà ñòåïåíè n â òî÷êå x.

269.           tr(M) – ñóììà äèàãîíàëüíûõ ýëåìåíòîâ êâàäðàòíîé ìàòðèöû M (ñëåä ìàòðèöû).

270.           trunc(x) – öåëàÿ ÷àñòü âåùåñòâåííîãî ÷èñëà x.

271.           Ucheb(n, x) – ïîëèíîì ×åáûøååâà âòîðîãî ðîäà ñòåïåíè n, â òî÷êå x.

272.           var(A) – âàðèàöèÿ (äèñïåðñèÿ) ýëåìåíòîâ ìàññèâà A, ãäå A – âåùåñòâåííàÿ èëè êîìïëåêñíàÿ ìàòðèöà ðàçìåðîì m´n èëè ìíîæåñòâî.

273.           vec2str(v) – òåêñòîâàÿ ïåðåìåííàÿ, îáðàçîâàííàÿ êîíâåðòèðîâàíèåì âåêòîðà v â ASCll-êîäàõ ê çíàêàì. Ýëåìåíòû v äîëæíû áûòü öåëûìè ÷èñëàìè â èíòåðâàëå îò 0 äî 255 (ðèñ. 1.30).

274.           wave(v) – äèñêðåòíîå âîëíîâîå ïðåîáðàçîâàíèå äåéñòâèòåëüíûõ ÷èñåë ñ èñïîëüçîâàíèåì 4-êîýôôèöèåíòíîãî âîëíîâîãî ôèëüòðà Äîáèøè (Daubechies). Âåêòîð v äîëæåí ñîäåðæàòü 2n äåéñòâèòåëüíûõ çíà÷åíèé, ãäå n – öåëîå ÷èñëî áîëüøå 0.

275.           WRITEBMP(file) øêàëà ÿðêîñòè âûõîäíîãî ôàéëà ìàòðèöû BMP.

276.           WRITE_HLS(file) ìàòðèöà, èìåþùàÿ öâåòîâîé ôîðìàò BMP â ôàéëå file, ïîëó÷åííàÿ èç ìàòðèöû, îáðàçîâàííîé ïóòåì ñëèÿíèÿ òðåõ ìàòðèö, äàþùèõ ñîîòâåòñòâóþùèå çíà÷åíèÿ îòòåíêà öâåòà, ÿðêîñòè è íàñûùåííîñòè.

277.           WRITE_HSV(file) – ìàòðèöà, èìåþùàÿ öâåòîâîé ôîðìàò BMP â ôàéëå file, ïîëó÷åííàÿ èç ìàòðèöû, îáðàçîâàííîé ïóòåì ñëèÿíèÿ òðåõ ìàòðèö, äàþùèõ ñîîòâåòñòâóþùèå çíà÷åíèÿ îòòåíêà öâåòà, íàñûùåííîñòè è âåëè÷èíû.

278.           WRITEPRN(file) – ìàòðèöà â ôàéëå file, èìåþùåì ñòðóêòóðó ASCII. Êàæäàÿ ñòðîêà ìàòðèöû ñòàíîâèòñÿ íîâîé ñòðîêîé â äàííîì ôàéëå.

279.           WRITERGB(file) – ìàòðèöà, èìåþùàÿ öâåòîâîé ôîðìàò BMP â ôàéëå file, ïîëó÷åííàÿ èç ìàòðèöû, îáðàçîâàííîé ïóòåì ñëèÿíèÿ òðåõ ìàòðèö, äàþùèõ êðàñíîå, çåëåíîå è ñèíåå çíà÷åíèÿ.

280.           Y0(x) – ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà íóëåâîãî ïîðÿäêà; x – äåéñòâèòåëüíîå è ïîëîæèòåëüíîå.

281.           Y1(x) – ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà ïåðâîãî ïîðÿäêà; x – äåéñòâèòåëüíîå è ïîëîæèòåëüíîå.

282.           Yn(m, x) – ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà ïîðÿäêà m; x – äåéñòâèòåëüíîå ïîëîæèòåëüíîå ÷èñëî; m – îò 0 äî 100.

283.           ys(n, x) – ñôåðè÷åñêàÿ ôóíêöèÿ Áåññåëÿ âòîðîãî ðîäà ïîðÿäêà n.

284.           d(m, n)d-ôóíêöèÿ Êðîíåêåðà (1, åñëè m=n, è 0 – â äðóãèõ ñëó÷àÿõ; x è y – öåëûå ÷èñëà).

285.           e(i, j, k) – àáñîëþòíî àñèììåòðè÷íûé òåíçîð ðàçìåðíîñòè òðè. i, j è k äîëæíû áûòü öåëûìè ÷èñëàìè îò 0 äî 2 (èëè ìåæäó ORIGIN è ORIGIN+2, åñëè ORIGIN¹0). Ðåçóëüòàò ðàâåí 0, åñëè ëþáûå äâà ðàâíû, 1 – åñëè òðè àðãóìåíòà ÿâëÿþòñÿ ÷åòíîé ïåðåñòàíîâêîé (0, 1, 2), è -1, åñëè òðè àðãóìåíòà ÿâëÿþòñÿ ïåðåñòàíîâêîé (0, 1, 2), êðàòíîé 2 è íå êðàòíîé 4.

286.           Ã(z)g-ôóíêöèÿ Ýéëåðà (ðèñ. 7.6).

287.           Ã(x, y) – âûòÿíóòàÿ g-ôóíêöèÿ Ýéëåðà.

288.           F(x) – ôóíêöèÿ Õåâèñàéäà (1, åñëè x³0, è 0 – â äðóãèõ ñëó÷àÿõ) (ðèñ. 6.19).

3.3. Ôóíêöèè ÷èñëåííûõ ìåòîäîâ[3] (Numerical Recipes):

·        ðåøåíèå ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé:

gaussjInvert(A) – inverse of the square matrix A, found using Gauss-Jordan elimination.

gaussjSolve(A, b) – solution vector x for the linear system Ax = b, found using Gauss-Jordan elimination.

luSolve(A, b) – solution vector x for the linear system Ax = b, found using LU decomposition.

tridag(a, b, c, r) – solution x of the tridiagonal system Ax = r; a is the subdiagonal, b the diagonal and c the superdiagonal of the matrix A, with the first entry of a and the last of c being 0.

improve(A, b, x) – improved solution vector for the system Ax = b, given a solution x.

svdcmp(M) – Singular Value Decomposition of the real m by n matrix M into a product UWV-transpose of matrices, where U is m by n, W is an n by n diagonal matrix and V is n by n. Returns a matrix of size max(m,n) by 2n+1, containing in columns 0 through n-1 the matrix U, in column n the diagonal elements of the matrix W and in columns n+1 through 2n the matrix V. If m and n are not equal, zeros are filled in for the unused entries.

svSolve(A, b) – Singular Value Decomposition of the real m by n matrix M into a product UWV-transpose of matrices, where U is m by n, W is an n by n diagonal matrix and V is n by n. Returns a matrix of size max(m, n) by 2n+1, containing in columns 0 through n-1 the matrix U, in column n the diagonal elements of the matrix W and in columns n+1 through 2n the matrix V. If m and n are not equal, zeros are filled in for the unused entries.

·        èíòåðïîëÿöèÿ è ýêñòðàïîëÿöèÿ:

polint(X, Y, p) – interpolated value at the point p of a function given by a table of x-y pairs, using polynomial interpolation. The x-y data are in the vectors X and Y. Returns a vector of length 2 containing the interpolated value and an estimate of the error.

ratint(X, Y, p) – interpolated value at the point p of a function defined by a table of x-y pairs, using rational function interpolation. The x-y data are in the vectors X and Y. Returns a vector of length 2 containing the interpolated value and an estimate of the error.

polcof(X, Y) – coefficients of the interpolating polynomial for the points with (x,y) coordinates in the vectors X and Y. The coefficients start with the constant term.

polin2(X, Y, Z, a, b) – interpolated value at the point (a,b) of a function of two variables defined by a table of x-y-z values, using polynomial interpolation. The x-y-z data are in the vectors X, Y, and Z. Returns a vector of length 2 containing the interpolated value and an estimate of the error.

·        èíòåãðèðîâàíèå ôóíêöèé:

Midpnt(f, a, b) – integral of f from a to b computed using the extended midpoint rule.

Midinf(f, a, b) – integral of f from a to b, where one of the limits is infinite.

Midsql(f, a, b) – integral of f from a to b where f has a "1 over the square root of x" singularity at a.

Midsqu(f, a, b) – integral of f from a to b where f has a singularity at b.

Midexp(f, a) – integral of f from a to b where f has a singularity at b.

qgaus(f, a, b) – integral of f from a to b computed using 10-point Gaussian quadrature.

Gauleg(f, a, b, n) – integral of f from a to b using n-point Gauss-Legendre quadrature.

Gaulag(f, alpha, n) – integral of x^alpha* e^(-x)* f from 0 to infinity computed using n-point Gauss-Laguerre.

Gauher(f, n) – integral of x^alpha* e^(-x)* f from 0 to infinity computed using n-point Gauss-Laguerre

Gaujac(f, alpha, beta, n) – integral of (1 - x)^alpha* (1 + x)^beta* f from 0 to infinity computed using n-point Gauss-Jacobi quadrature.

quad3d(f, X1, X2, Y, Z) – integral of f over the three dimensional region defined by the x limits x1 and x2 and the y and z boundaries in Y (a two-vector giving the lower and upper y limits as a function of x) and Z (a two-vector giving the lower and upper z limits as a function of x and y).

·        ïðåîáðàçîâàíèå ôóíêöèé:

ddpoly(c, x, nd) – vector containing the value at x of the polynomial with coefficients c, and the first nd derivatives evaluated at x.

poldiv(N, D) – quotient and remainder resulting from dividing the polynomial with coefficients N by the polynomial with coefficients D. The coefficients of the quotient are in the first column of the result and the coefficients of the remainder in the second column.

chebft(a, b, n, f) – coefficients for an approximation to f over the interval [a,b] as a sum of the first n Chebyshev polynomials.

chebev(a, b, c, x) – Chebyshev approximation to the value of a function at the point x. The Chebyshev coefficients c of a Chebyshev approximation to f over the interval (a,b) were computed using the function chebft.

Chebcoef(c, a, b) – coefficients of a polynomial approximation for a function f, computed from the coefficients c of the Chebyshev approximation for f over the interval (a,b). Use chebft to compute c.

pade(C) – coefficients of the numerator and denominator of a Pade approximation to a function that has a Taylor approximation with coefficients C. The third column of the returned array contains the norm of the residual vector followed by zeros.

ratlsq(f, a, b, m, k) – coefficients for a rational approximation to f over the interval [a,b] with numerator degree m and denominator degree n.

·        ðàáîòà ñî ñïåöèàëüíûìè ôóíêöèÿìè:

gammln(x) – ln(Gamma(x))

bico(n, k) – binomial coefficient (n,k).

beta(x, w) – beta function B(x,w).

factln(n) – logarithm of n factorial, ln(n!).

gammp(a, x) – incomplete gamma function P(a,x).

gammq(a, x) – complementary incomplete gamma function.

erffc(x) – complementary error function.

ei(x) – exponential integral.

betai(a, b, x) – incomplete beta function I(a,b,x).

bessjy(x, n) – Bessel functions Jn and Yn and their derivatives for a positive real argument x. Returns a 2 by 2 matrix containing Jn(x) and Yn(x) in the first row and Jn'(x) and Yn'(x) in the second row.

bessik(x, n) – Jn(x) and Yn(x) in the first row and Jn'(x) and Yn'(x) in the second row.

airy(x) – Airy functions Ai(x) and Bi(x) and their derivatives for a real number x. Returns a 2 by 2 matrix containing Ai(x) and Bi(x) in the first row and Ai'(x) and Bi'(x) in the second row.

sphbes(n, x) – spherical Bessel functions jn(x) and yn(x) and their derivatives for a positive argument x. Returns a 2 by 2 matrix containing jn(x) and yn(x) in the first row and j'n(x) and y'n(x) in the second row.

plgndr(nu, mu, x) – value at x of the associated Legendre polynomial P(nu,mu,x).

FresnelC(x) – Fresnel cosine integral.

FresnelS(x) – Fresnel sine integral.

Ci(x) – cosine integral.

Si(x) – sine integral.

rf(x, y, z) – Carlson's elliptic integral of the first kind.

rd(x, y, z) – Carlson's elliptic integral of the second kind.

rj(x, y, z, p) – Carlson's elliptic integral of the third kind.

rc(x, y) – Carlson's degenerate elliptic integral.

ellf(phi, k) – Legendre elliptic integral of the first kind.

elle(phi, k) – Legendre elliptic integral of the second kind.

ellpi(phi, k) – Legendre elliptic integral of the third kind.

sncndn(u, m) – Jacobian elliptic functions sn(u|m), cn(u|m), and dn(u|m), in a vector of length 3.

hypgeo(a, b, c, z) – hypergeomtric function F(a,b;c;z) for complex argument z.

·        ðàáîòà ñî ñëó÷àéíûìè ÷èñëàìè:

InitializeExpdev(k) – input value. Initializes the function expdev with a seed value for later calls.

expdev(n) – vector of n random numbers drawn from an exponential distribution with mean 1.

InitializeGasdev(k) – input value. Initializes the function gasdev with a seed value for later calls.

gasdev(n) – vector of n random numbers drawn from a normal distribution with mean 0 and variance 1.

InitializeGamdev(k) – input value. Initializes the function gamdev with a seed value for later calls.

gamdev(a, n) – vector of n random numbers drawn from a gamma distribution of order a.

InitializePoidev(k) – input value. Initializes the function poidev with a seed value for later calls.

poidev(y, n) – vector of n random numbers drawn from a Poisson distribution with mean y.

InitializeBnldev(k) – vector of n random numbers drawn from a Poisson distribution with mean y.

bnldev(p, N, n) – vector of n random numbers drawn from a binomial distribution for N trials with success probability p.

irbit2(n) – vector n random bits (0 or 1) generated by a recurrence based on the primitive polynomial.

InitializeSobseq(k) – input value; used to initialize the function sobseq for later calls.

sobseq(n, m) – array of m points in n-space generated using a Sobol' sequence; each column represents a point, with all coordinates between 0 and 1.

vegas(rg, f, init, n, im) – integral of f over the region defined in the array rgn. Returns an array of length 3 containing the best estimate for the integral, its standard deviation, and the value of the chi-square statistic for the set of estimates.

·        ïîèñê êîðíåé íåëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé è ñèñòåì:

rtbis(f, a, b, acc) – root of f between a and b, to accuracy acc, found by bisection.

zriddr(f, a, b, acc) – root of f between a and b, to accuracy acc, found using Ridder's method.

zbrent(f, a, b, acc) – root of f between a and b, to accuracy acc, found by Brent's method.

laguer(C, z) – approximation for a root of the polynomial with coefficients C, using Laguerre's method starting from the guess z.

zroots(C, polish) – vector containing all the complex roots of the polynomial with complex coefficients C. Set polish to 1 to refine the roots.

newt(x, F) – common root of the set of n functions of n variables given in F, using Newton's method. The length-n vector x is an initial guess.

broydn(x, F) – common root of the set of n functions of n variables given in F, using Broyden's method. The length-n vector x is an initial guess.

·        ìèíèìèçàöèÿ è ìàêñèìèçàöèÿ ôóíêöèé îäíîé è ìíîãèõ ïåðåìåííûõ (âêëþ÷àÿ çàäà÷ó ëèíåéíîãî ïðîãðàììèðîâàíèÿ è çàäà÷ó êîììèâîÿæåðà):

brent(a, b, c, f, acc) – location of a minimum of f lying between a and c, where b is between a and c and f(b) is less than f(a) and f(c); found by Brent's method with precision acc.

amoeba(p, acc, f) – location of a minimum of the scalar function of n variables f, with initial guess in the vector p; uses the downhill simplex method and returns a matrix whose rows are n + 1 points in n-space at which f is within acc of a minimum.

powell(s, xi, ftol, f) – location of a minimum of the scalar function of n variables f, with initial guess in the vector s and starting directions in the array xi; uses Powell's method with convergence tolerance ftol.

frprmn(p, acc, f, gradf) – location of a minimum of the scalar function of n variables f, with initial guess in the vector p and gradient computed by the vector function gradf; uses Fletcher-Reeves-Polak-Ribiere minimization with convergence tolerance acc.

dfpmin(p, acc, f, gradf) – location of a minimum of the scalar function of n variables f, with initial guess in the vector p and gradient computed by the vector function gradf; uses Davidon-Fletcher-Powell minimization with convergence tolerance acc.

simplx(S, m1, m2) – vector containing the values of the variables that minimize the objective function subject to a set a inequalities. The matrix S contains the objective function and the inequality constraints in restricted normal form; m1 and m2 are the numbers of "less than or equal to" and "greater than or equal to" constraints.

anneal(X, Y) – solution to the traveling salesman problem. The vectors X and Y give the coordinates of the cities, and the returned vector gives the order in which they should be visited for a nearly minimal path.

·        ðàáîòà ñ ñîáñòâåííûìè ñèñòåìàìè:

jacobi(M) – eigenvalues and eigenvectors of the real symmetric matrix M; the eigenvalues are in the first column of the answer and the eigenvectors in the remaining columns.

tqli(d, e) – eigenvalues and eigenvectors of a real symmetric tridiagonal matrix; d is the diagonal and e is the subdiagonal of the matrix (the first entry of e is not used). The eigenvalues are in the first column of the answer and the eigenvectors in the remaining columns.

·        áûñòðûå ïðåîáðàçîâàíèÿ Ôóðüå:

cosft2(v) – staggered cosine transform of the data vector v.

icosft2(v) – inverse staggered cosine transform of v.

fourn(v, n) – n-dimensional discrete Fourier transform of the data stored in v.

ifourn(v, n) – n-dimensional inverse discrete Fourier transform of the points stored in v.

·        ñïåêòðàëüíûé àíàëèç:

memcof(v, m) – vector of m linear prediction coefficients for the data v.

fixrts(d) – modified vector of linear prediction coefficients; moves any zeros of the characteristic polynomial that are outside the unit circle to inside.

predic(v, d, n) – vector of n values predicted from the data v using the linear prediction coefficients d.

evlmem(f, d, m) – vector giving the power spectrum of the data d at the frequencies in f, computed using m coefficients generated by the function memcof.

period(X, Y, of, hf) – Lomb periodogram of a set of x-y data points. The x-y data are in the vectors X and Y; hf is the highest frequency and of is the oversampling factor. The result is a matrix with frequencies in the first column and the values of the normalized periodogram at these frequencies in the second column.

fasper(X, Y, of, hf) – Lomb periodogram of a set of x-y data points, using a fast algorithm. The x-y data are in the vectors X and Y; hf is the highest frequency and of is the oversampling factor. The result is a matrix with frequencies in the first column and the values of the normalized periodogram at these frequencies in the second column.

wt1Daub4(v) – 1-dimensional discrete wavelet transform of v computed using the Daubechies 4-coefficient wavelet filter.

iwt1Daub4(v) – inverse 1-dimensional discrete wavelet transform of v computed using the Daubechies 4-coefficient wavelet filter.

wtnDaub4(v, n) – n-dimensional discrete wavelet transform of the data stored in v computed using the Daubechies 4-coefficient wavelet filter.

iwtnDaub4(v, n) – inverse n-dimensional discrete wavelet transform of the points stored in v computed using the Daubechies 4-coefficient wavelet filter.

wt1Pwt(v, w) – 1-dimensional discrete wavelet transform of v computed using the Daubechies 4-, 12- or 20-coefficient wavelet filter; w gives the order of the filter.

iwt1Pwt(v, w) – inverse 1-dimensional discrete wavelet transform of v computed using the Daubechies 4-, 12- or 20-coefficient wavelet filter; w gives the order of the filter.

wtnPwt(v, w, m) – n-dimensional discrete wavelet transform of the data stored in v computed using the Daubechies 4-, 12- or 20-coefficient wavelet filter; the elements of w give the size of the data in each dimension; m gives the order of the filter.

iwtnPwt(v, w, m) – inverse n-dimensional discrete wavelet transform of the data stored in v computed using the Daubechies 4-, 12- or 20-coefficient wavelet filter; the elements of w give the size of the data in each dimension; m gives the order of the filter.

·        ñòàòèñòè÷åñêàÿ îáðàáîòêà äàííûõ:

moment(v) – Moment information for the data vector v. Returns the mean, average absolute deviation, standard deviation, variance, skewness and kurtosis of v.

ttest(v1, v2) – value of Student's t to test whether the two samples v1 and v2 are drawn from distributions with the same mean. The two distributions are assumed to have equal variances. The result is a vector of length 2 containing the value of Student's t and the probability that this value or larger would occur when the distributions have the same mean.

tutest(v1, v2) – value of Student's t to test whether the two samples v1 and v2 are drawn from distributions with the same mean. Equal variances are not assumed. The result is a vector of length 2 containing the value of Student's t and the probability that this value or larger would occur when the distributions have the same mean.

tptest(v1, v2) – value of Student's t to test whether the paired data v1 and v2 are drawn from distributions with the same mean. Equal variances are not assumed, and the paired data may be correlated. The result is a vector of length 2 containing the value of Student's t and the probability that this value or larger would occur when the distributions have the same mean.

ftest(v1, v2) – value of the F statistic to test whether the two samples v1 and v2 are drawn from distributions with the same variance. The result is a vector of length 2 containing the value of F and the probability that this value or larger would occur when the distributions have the same variance.

chsone(bins, ebins, k) – Chi-square for the comparison of an observed distribution with a known distribution. The binned observed data are in bins, the expected counts for the know distribution are in ebins; k is the number of constraints. The result is a vector of length 3 containing the number of degrees of freedom, the value of the chi-square statistic and the probability that this value or a higher value will occur when the observed data is drawn from a population with the known distribution.

chstwo(bins1, bins2, k) – Chi-square for two sets of binned observed data. The binned observed data are in bins1 and bins2 and k is the number of constraints. The result is a vector of length 3 containing the number of degrees of freedom, the value of the chi-square statistic and the probability that this value or a higher value will occur when the two sets of observed data are drawn from the same distribution.

ksone(d, f) – Kolmogorov-Smirnov statistic comparing the distribution of the data in d with the cumulative distribution function f. The result is a vector of length 2 containing the statistic D and its significance level.

kstwo(v1, v2) – Kolmogorov-Smirnov statistic for two sets of data v1 and v2. The result is a vector of length 2 containing the value of the Kolmogorov-Smirnov statistic D and the probability that this value or a larger value would occur if the two sets of observed data were drawn from the same distribution.

cntab1(T) – significance of association between two variables with observed data stored in the two-dimensional contingency table T. The result is a length 5 vector containing the value of the chi-square statistic, the number of degrees of freedom, the probability that the value of the chi-square statistic occurs when the variables are independent, Cramer's V, and the contingency coefficient C.

pearsn(X, Y) – Information about the correlation of the paired data in the vectors X and Y. The result is a vector of length 3 containing the value of Pearson's r, the significance level at which we reject the null hypothesis that the two samples are uncorrelated and Fisher's z-transformation.

spear(X, Y) – rank-order correlation of the data vectors X and Y. The result is a vector of length 5 containing the sum squared difference of ranks D, the number of standard deviations by which D deviates from the expected value under the null hypothesis, the probability that this value or a larger value occurs for uncorrelated samples, Spearman's rank-order correlation coefficient rs and the probability that this value or one larger in absolute value would occur if the samples were uncorrelated.

kendl1(X, Y) – Kendall's tau for the data sets X and Y. The result is a vector containing Kendall's tau, its number of standard deviations away from zero and the probability that a value this large or larger in absolute value would occur if the samples were uncorrelated.

kendl2(T) – Kendall's tau for the data in the contingency table T. The result is a vector containing Kendall's tau, its number of standard deviations away from zero and the probability that a value this large or larger in absolute value would occur if the samples were uncorrelated.

ks2d1s(x, y, quad) – two-dimensional Kolmogorov-Smirnov statistic comparing the x-y data points given by the vectors x and y with the target model given by the function quad. The result is a vector of length 2 containing the K-S statistic and its significance level.

quadvl(x, y) – vector of length 4 containing the fraction of the uniform distribution on [0,1] x [0,1] that lies in each quadrant around (x,y).

ks2d2s(X, Y, Z, W) – two-dimensional Kolmogorov-Smirnov statistic for the two-dimensional data sets defined by the vectors X, Y and Z, W. The result is a length 2 vector containing the largest percentage difference found between the two sets of data points and the probability that this value is consistent with the two sets of data having the same distribution.

·        ìîäåëèðîâàíèå äàííûõ:

fit(X, Y) – best straight-line fit to the x-y data in the vectors X and Y, assuming unknown errors in the first coordinate. The result is a vector of length 5 containing the values of a and b such that a + bx is the line of best fit for the given data, the probable uncertainties of the values of a and b and the value of the chi-square statistic for the set of points.

fitmwt(X, Y, S) – best straight-line fit to the x-y data in the vectors X and Y, assuming no errors in the first coordinate and standard deviations for the second coordinate given by S. The result is a vector of length 6 containing the values of a and b such that a + bx is the line of best fit for the given data, the probable uncertainties of the values of a and b, the value of the chi-square statistic for the set of points and the probability of a chi-square statistic this large or larger.

fitexy(X, Y, SX, SY) – best straight-line fit to the x-y data in the vectors X and Y, with standard deviations SX and SY. The result is a vector of length 6 containing the values of a and b such that a + bx is the line of best fit for the given data, the probable uncertainties of the values of a and b, the value of the chi-square statistic for the set of points and the probability of a chi-square statistic this large or larger.

lfit(x, y, s, a, ia, F) – coefficients for the linear combination of the functions in F that best fit the x-y data given in the vectors x and y, with standard deviations given by s. The vector a gives values for the coefficients and the vector ia indicates which functions are to be fitted and which take their coefficients from a.

svdfit(x, y, s, m, F) – coefficients for the linear combination of the m functions in F that best fit the x-y data given in the vectors x and y, with standard deviations for the y's given by s.

svdvar(x, y, s, m, F) – covariance matrix for the fitting parameters found by svdfit. The data vectors are x and y, with standard deviations for the y's in s. The fitting functions are in F.

Mrqmin(x, y, s, a, ia, F) – coefficients for the best fit by the nonlinear function defined by F to the x-y data given in the vectors x and y, with standard deviations given by s. The vector a gives values for the parameters and the vector ia indicates which parameters are to be fitted and which held fixed at the values in a. F is a vector function of x and the parameters, with the fitting function in the first element and its derivative with respect to each parameter in the remaining elements.

fgauss(x, a) – value of a sum of Gaussian curves specified by the parameters in the vector a at the point x, followed by the derivatives with respect to each parameter evaluated at x.

medfit(X, Y) – line with minimum absolute deviation from the x-y data points in the vectors X and Y. The result is a vector of length 3 containing the values a and b such that the minimizing line has the equation y = a + bx and the mean absolute deviation of the points from the computed line.

·        ðåøåíèå îáûêíîâåííûõ äèôôåðåíöèàëüíûõ óðàâíåíèé (çàäà÷à Êîøè):

rkdumb(y, x1, x2, s, D) – solution to a system of n first-order differential equations, computed over the interval x1 to x2 in s equal steps using 4th order Runge-Kutta. The initial conditions are in the vector y and the array D gives the derivatives of the system components. The result is a matrix with the x values in the first column and the corresponding values of the solution components in the following columns.

BsstepR(y, x1, x2, acc, ht, hm, D, J, km, s) – solution to a system of n first-order differential equations, computed over the interval x1 to x2 using the Bulirsch-Stoer method with rational extrapolation. The initial conditions are in the vector y and the array D gives the derivatives of the system components. The result is a matrix with the x values in the first column and the corresponding values of the solution components in the following columns.

BsstepP(y, x1, x2, acc, ht, hm, D, J, km, s) – solution to a system of n first-order differential equations, computed over the interval x1 to x2 using the Bulirsch-Stoer method with polynomial extrapolation. The initial conditions are in the vector y and the array D gives the derivatives of the system components. The result is a matrix with the x values in the first column and the corresponding values of the solution components in the following columns.

Stiff(y, x1, x2, acc, ht, hm, D, J, km, s) – solution to a stiff system of n first-order differential equations, computed over the interval x1 to x2, computed by Rosenbrock methods. The initial conditions are in the vector y, the array D gives the derivatives of the system components, and the array J gives the Jacobian matrix. The result is a matrix with the x values in the first column and the corresponding values of the solution components in the following columns.

·        ðåøåíèå êðàåâîé çàäà÷è:

shoot(v, x1, x2, D, load, score) – Initial conditions providing a solution to the two-point boundary value problem for a system of first-order differential equations. The starting and end points are x1 and x2 and the system derivatives are in the array D.

·        ðåøåíèå äèôôåðåíöèàëüíûõ óðàâíåíèé â ÷àñòíûõ ïðîèçâîäíûõ:

fred2(n, a, b, g, lambdaK) – solution for the Fredholm integral equation of the second kind; the integral is over the interval [a,b] with kernel lambdaK and added function g, and the answer is returned as a two-column array giving abscissas for n-point Gaussian quadrature and the value of the solution at these points.

fredin(x, n, a, b, g, lambdaK) – value at x of the solution of a Fredholm equation, computed by interpolating the n-point answer returned by the function fred2. The integral is over the interval [a,b] with kernel lambdaK and added function g.

voltra(n, m, a, h, g, K) – solution for a set of m linear Volterra equations of the second kind, with matrix kernel K and added vector function g. The starting point for the integrals is a, and n-1 steps of size h are taken.

sor(a, b, c, d, e, f, u, rjac) – solution of a second-order difference equation over a rectangular mesh, computed by relaxation. The matrices a b c d e and f define the differencing scheme, u contains the initial conditions, and rjac is the Jacobian radius.



[1] Åñëè ãîâîðèòü î ñèìâîëüíîé ìàòåìàòèêå (à êî ìíîãèì âñòðîåííûì ôóíêöèè Mathcad ïðèìåíèìû àíàëèòè÷åñêèå ïðåîáðàçîâàíèÿ – ñì. ýòþä 7), òî òåðìèí «âîçâðàùàþò» òóò ñîâñåì íåóìåñòåí.

[2] Ôóíêöèè ðàçáèòû ïî ãðóïïàì ñîãëàñíî Ìàñòåðó ôóíêöèé (ñì. ðèñ. 1.28). Íåêîòîðûå ôóíêöèè (lsolve, íàïðèìåð) óïîìèíàþòñÿ â íåñêîëüêèõ ãðóïïàõ.

[3] Îíè ñòàíîâÿòñÿ âñòðîåííûìè ñ Mathcad ïîñëå ïîäãðóçêè ñîîòâåòñòâóþùåãî ýëåêòðîííîãî ó÷åáíèêà.