Параметры состояния

Параметр – это один из совокупности независимых физических величин, определяющих тепловое состояние системы (тела). Например, если системой является водяной пар, то для определения состояния этой системы используются параметры состояния: давление, объем, масса, температура и другие.

Параметры состояния всегда относятся к термодинамическим системам, которые находятся в термодинамическом равновесии. Термодинамическое равновесное состояние – это состояние термодинамической системы, характеризующееся при постоянных внешних условиях неизменностью параметров во времени и отсутствия в системе потоков.

 

Рис. 1.4. Неравновесное (а) и равновесное (б) состояние изолированной термодинамической системы.

Число параметров состояния, которое необходимо для однозначного определения равновесного состояния, зависит от вида термодинамической системы. Состояние простой системы (отсутствуют электрические, магнитные и др. эффекты) будет однозначно определено двумя, либо тремя параметрами состояния.

В технической термодинамике основными параметрами состояния являются термические параметры: абсолютное давление (р), температура (Т) и удельный объем (v).

Давление – сила, действующая нормально к площади.

p = F/f                                      (1.1)

где     F – сила, действующая нормально к площади;

f – площадь.

В международной системе единиц (СИ) имеет размерность p = 1Н/1м2 = 1 Па. Паскаль равен давлению, вызываемому силой 1н по нормали к поверхности в 1 м2.

Все технические приборы, измеряющие давление, показывают избыточное давление Ризб. Избыточное давление – это разность между давлением в термодинамической системе (абсолютное давление) и внешним атмосферным давлением В. Термодинамика оперирует только с абсолютным давлением в термодинамической системе, которое равно

Pабс = Ризб + В,                           (1.2)

Рабс = В – Рвак                            (1.3)

где Ризб – избыточное давление; B – атмосферное давление; Рабс – абсолютное давление; Рвак – величина вакуума (разряжения) формулы (1.2) используется при давлениях больше атмосферного, а формула (1.3) – при давлениях меньше атмосферного.

В технической термодинамике часто используют внесистемные единицы давления. Из них весьма распространена единица «физическая атмосфера» (атм)

1 атм = 1,01325·105 Па, техническая атмосфера (ат)

1 ат = 9·80665·104 Па и бара 1 бар = 1·105 Па.

Температура – одна из основных величин в технической термодинамике. Принцип измерения температуры основан на очевидном законе логики. Если два тела в отдельности находятся в тепловом равновесии с третьим телом, то все три тела находятся в тепловом равновесии, а значит имеют одинаковую температуру. Следовательно, по показанию термометра можно сравнить температуру разных тел.

Для измерения температуры используют технические приборы: термометры, термопары, термометры сопротивления и др. В каждом  из этих приборов используется зависимость какого-либо физического свойства (коэффициента объемного расширения, удельного сопротивления, электродвижущей силы) от температуры. Определение температуры при помощи таких приборов зависит от индивидуальных свойств термодинамического вещества (чувствительного элемента термометра), так как одна и та же физическая величина имеет разную зависимость от температуры для различных материалов.

Абсолютная температура (не зависит от свойств термометрического вещества) определяется с помощью идеального газового термометра, что следует из Второго закона термодинамики. Это впервые показал Кельвин и в его честь эта абсолютная (термодинамическая температура) была названа температурой Кельвина. Термодинамическая температура по Второму закону не может иметь отрицательных значений, а нулевая точка равна наинизшей термодинамически возможной температуре – абсолютному нулю.

Измерение термодинамической температуры газовым термометром сложно и дорого. Поэтому используют простой метод измерения температур, результаты которых по возможности приближались к значениям термодинамической температуры. Поэтому, кроме термодинамической шкалы температур существует молекулярная температурная шкала (МТШ-90).

Единицей измерения температуры в Международной системе единиц (СИ) является градус Кельвина – К, как по термодинамической шкале температур, так и по МТШ-90. Между температурой по термодинамической шкале, выраженной в градусах Кельвина и в градусах Цельсия имеется связь:

Т, К = t˚C + 273,15                   (1.4)

Кроме МТШ-90 в ряде стран используют другие температурные шкалы – шкала Фаренгейта, шкала Реомюра, шкала Ренкина. Ниже приведены соотношения для пересчета значений температур из одних шкал в другие.

Т, К = t˚C + 273,15;                   (1.5)

t, ˚F = 1,8C + 32;                    (1.6)

t, ˚R = 0,8C;                           (1.7)

t, ˚Ra = 1,8 (C + 273,15),         (1.8)

где ТК – термодинамическая температура по шкале Кельвина, К; t˚C – температура по шкале Цельсия, ˚C; t˚F – температура по шкале Фаренгейта, ˚F; t˚R – температура по шкале Реомюра, ˚R; t˚Ra– температура по шкале Ренкина, ˚Ra.

Удельный объем, как температура и давление, являются термодинамическим параметром. Удельный объем (v) – величина, равная отношению объем V однородного тела к его массе:

v = V/m = 1/ρ                           (1.9)

Размерность удельного объема в Международной системе СИ (м3/кг). Эта величина обратно пропорциональна плотности (ρ). В термодинамике удобно рассматривать не плотность, а удельный объем, так как многие термодинамические системы имеют настоящую массу и тогда удельный объем пропорционален общему объему.

В термодинамике широко распространено понятие о количестве вещества «n». Во времена Ньютона количество вещества отождествлялось с массой. В современной метрологии количеством вещества называется число атомов, молекул, ионов или, как говорят, число структурных элементов, из которых состоит вещество. Но число частиц тела макроскопических размеров велико (N ≈ 1025). Поэтому вводится величина пропорциональная числу частиц, которая получила название количества вещетсва.

n = N/Na,                                  (1.10)

где Na – универсальная газовая постоянная или число Авогадро. Количество вещества относится к категории основных в системе СИ и получила наименование моля при следующем определении: моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится в углероде-12 массой 0,012 кг. Из формулы (1.10) видно, что число Авогадро выражает число молекул или других частиц, содержащихся в одном моле вещества.

Масса вещества естественно будет пропорциональна количеству вещества n

m = M·n,                                   (1.11)

где М – молярная масса вещества.

Подставляя в формулу значения количества вещества, получим:

M = m·Na/N,                              (1.12)

Молярная масса вещества М пропорциональна относительной молекулярной массе данного вещества и может быть определена из соотношения:

М = k·Mr,                                  (1.13)

где k – размерный коэффициент пропорциональности, зависящий от системы единиц и равный k = 10-3 кг/моль (в системе СИ).

Относительная молекулярная масса Mr определяется по формуле:

Mr = Σ liAr,i,                                (1.14)

где li – число атомов i-го элемента в молекуле, Ar,i– относительная атомная масса i-го элемента (безразмерная величина). Заметим, что значение молярной массы, выраженной г/моль или кг/кмоль, численно совпадает с относительной молекулярной массой.