ЗАКОН ИНЕРЦИИ КВАДРАТИЧНЫХ ФОРМ. Примеры
|
|||
|
|||
Высшая математика |
Пусть k(x) = 3x12 − 2x2x1+ 3x22— квадратичная форма в пространствеR2. И пусть e1= (1, 0), e2= (0, 1) — базис в R2. Марица A квадратичной формы в этом базисе имеет вид: Найдём канонический базис квадратичной формы — собственный базис матрицы A и приведём её к диагональному виду: Имеем: E1, E2 — канонический базис квадратичной формы. Канонический вид квадратичной формы в этом базисе k(y) = 4y12 + 2y22.
|
© МЭИ (ТУ) 2007 |