ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ, РАЦИОНАЛЬНЫЕ ОТНОСИТЕЛЬНО sin x И cos x. УНИВЕРСАЛЬНАЯ ПОДСТАНОВКА. ПРИМЕР

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Элементарная математика

  Тригонометрия

  Радиус вектор точки. Угол в тригонометрии

 Понятие угла в тригонометрии

 Градусная и радианная меры углов

  Тригонометрические функции и их свойства

 Определение тригонометрических функций

 Значения тригонометрических функций

 Основные свойства тригонометрических функций

 Свойства функции y = sin x и ее график

 Свойства функции y = cos x и ее график

 Свойства функции y = tg x и ее график

 Свойства функции y = ctg x и ее график

  Основные формулы тригонометрии

 Основные тригонометрические тождества

 Тригонометрические функции суммы и разности углов (формулы сложения)

 Тригонометрические функции двойных и тройных углов

 Формулы понижения степени (тригонометрические функции половинных углов)

 Преобразование суммы или разности тригонометрических функций в произведение

 Преобразование произведений тригонометрических функций в сумму или разность

 Выражение тригонометрических функций через тангенс половинного аргумента

 Формулы приведения

  Обратные тригонометрические функции (аркфункции) и их свойства

 Арксинус и его график

 Арккосинус и его график

 Арктангенс и его график

 Арккотангенс и его график

 Значения обратных тригонометрических функций часто встречающихся углов

 Значения тригонометрических функций от аркфункций

  Решение тригонометрических уравнений

 Понятие тригонометрического уравнения

 Простейшие тригонометрические уравнения и формулы их решений

  Тригонометрические уравнения, содержащие тригонометрические функции с одним и тем же аргументом

 Тригонометрические уравнения, рациональные относительно sin x и cos x. Универсальная подстановка

 Подстановка t = sin x

 Подстановка t = cos x

 Подстановка t = tg x

 Уравнения, линейные относительно sin x и cos x

 Уравнения, однородные относительно sin x и cos x

  Тригонометрические уравнения, содержащие тригонометрические функции с разными аргументами

 Общие рекомендации к решению

 Уравнения, левая часть которых разлагается на множители, а правая равна нулю

 Метод сравнения аргументов

 Нестандартные приемы решения тригонометрических уравнений

  Простейшие тригонометрические неравенства

 Общая схема решения тригонометрических неравенств

     Задача.  Решить  уравнение   sin x – 3 cos x  = 3.

    Решение.  Воспользуемся  универсальной   подстановкой   .  Сначала необходимо  проверить,  будут  ли  значения

                                                 (1)

при  которых  функция     не  имеет смысла,  корнями  нашего  уравнения:

      Итак,  значения  (1)  переменной   x  обращают данное уравнение  в  верное числовое  равенство,  а  значит  являются  его  корнями.

      Считая, что

применим универсальную подстановку   .    Используя соотношения

приводим данное уравнение  к виду

 

НАЗАД

© МЭИ (ТУ) 2007