УРАВНЕНИЯ, ОДНОРОДНЫЕ ОТНОСИТЕЛЬНО sin x И cos x

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Элементарная математика

  Тригонометрия

  Радиус вектор точки. Угол в тригонометрии

 Понятие угла в тригонометрии

 Градусная и радианная меры углов

  Тригонометрические функции и их свойства

 Определение тригонометрических функций

 Значения тригонометрических функций

 Основные свойства тригонометрических функций

 Свойства функции y = sin x и ее график

 Свойства функции y = cos x и ее график

 Свойства функции y = tg x и ее график

 Свойства функции y = ctg x и ее график

  Основные формулы тригонометрии

 Основные тригонометрические тождества

 Тригонометрические функции суммы и разности углов (формулы сложения)

 Тригонометрические функции двойных и тройных углов

 Формулы понижения степени (тригонометрические функции половинных углов)

 Преобразование суммы или разности тригонометрических функций в произведение

 Преобразование произведений тригонометрических функций в сумму или разность

 Выражение тригонометрических функций через тангенс половинного аргумента

 Формулы приведения

  Обратные тригонометрические функции (аркфункции) и их свойства

 Арксинус и его график

 Арккосинус и его график

 Арктангенс и его график

 Арккотангенс и его график

 Значения обратных тригонометрических функций часто встречающихся углов

 Значения тригонометрических функций от аркфункций

  Решение тригонометрических уравнений

 Понятие тригонометрического уравнения

 Простейшие тригонометрические уравнения и формулы их решений

  Тригонометрические уравнения, содержащие тригонометрические функции с одним и тем же аргументом

 Тригонометрические уравнения, рациональные относительно sin x и cos x. Универсальная подстановка

 Подстановка t = sin x

 Подстановка t = cos x

 Подстановка t = tg x

 Уравнения, линейные относительно sin x и cos x

 Уравнения, однородные относительно sin x и cos x

  Тригонометрические уравнения, содержащие тригонометрические функции с разными аргументами

 Общие рекомендации к решению

 Уравнения, левая часть которых разлагается на множители, а правая равна нулю

 Метод сравнения аргументов

 Нестандартные приемы решения тригонометрических уравнений

  Простейшие тригонометрические неравенства

 Общая схема решения тригонометрических неравенств

   Так называют уравнение вида

                       (1)

левая  часть  которых  является  однородным  многочленом  степени  n  относительно   u = sin x,   v = cos x.

      Метод решения таких уравнений заключается в следующем.  Вначале проверяем,  не  являются  ли  корни  уравнения

корнями  данного  уравнения  (ясно,  что  это  будет  лишь  при  ).   Далее,
разделив   обе  части  уравнения  (1)  на   ,   получим  уравнение

которое  заменой   t = tg x   сводится  к  многочленному  уравнению

Найдя корни 

этого  уравнения,  получим  простейшие  уравнения

Решив  эти  уравнения,  найдем  корни  исходного  уравнения.

ПРИМЕР

© МЭИ (ТУ) 2007