ДИФФЕРЕНЦИАЛЫ ВЫСШЕГО ПОРЯДКА

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Дифференциальное исчисление функции одной переменной

  Производные первого порядка

 Определение производной

 Геометрическая интерпретация производной

 Односторонние производные

 Необходимое условие существования производной

 Производные суммы, произведения, частного

 Таблица производных

 Производные обратных функций

 Производные функций заданных параметрически

  Дифференцируемые функции

 Определение дифференцируемой функциий

 Необходимое условие дифференцируемости

 Необходимое и достаточное условие дифференцируемости

 Определение дифференциала функции

 Геометрический смысл дифференциала

 Диференциал суммы, произведения, частного

  Производная сложной функции

 Определение производной сложной функции

 Таблица призводных сложных функций

 Логарифмическое дифференциирование

 Дифференциал сложной функции

  Производные высших порядков

 Определение производной высших порядков

 Формулы для вычисления производных высших порядков

 Дифференциалы высших порядков

  Формула Тейлора

 Формула Тейлора

 Формула Тейлора с остаточным членом в форме Лагранжа

 Формула Тейлора с остаточным членом в форме Пеано

 Формула Тейлора для элементарных функций

Пусть задана функция y = f(x) .

Дифференциал первого порядка от дифференциала первого порядка функции f(x) называется дифференциалом второго порядка (вторым дифференциалом) этой функции и обозначается через d2y:

  .  

Дифференциалом n -го порядка (при n ≥ 2) называют дифференциал первого порядка от дифференциала (n-1) -го порядка

   

Вычисление дифференциала n -го порядка функции y = f(x)

  .  

Дифференциалы высших порядков, вообще говоря, не обладают свойством инвариантности

Подробнее    

 

 

© МЭИ (ТУ) 2007