МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА
|
||||
|
||||
Высшая математика |
Линейный оператор A действует из n-мерного линейного пространства X в m-мерное линейное пространство Y . В этих пространствах определены базисы e = {e1, ..., en} и f = {f1, ..., fm}. Пусть A(ei ) = a1i·f1 + a2i·f2 + ...+ ami·fm — разложение образа i-го базисного вектора базиса e пространства X по базису f пространства Y, i = 1, 2, ..., n. Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f , A = {aij}= {A(ej )i}: Координаты образа y = A(x) и прообраза x связаны соотношеннием: y = A· x,
|
© МЭИ (ТУ) 2007 |