МИНОРЫ И АЛГЕБРАИЧЕСКИЕ ДОПОЛНЕНИЯ

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Линейная алгебра

  Матрицы и определители

  Матрицы

 Матрицы

 Линейные операции с матрицами

 Определитель матрицы

 Умножение матриц

 Обратная матрица

 Элементарные преобразования матрицы

 Ранг матрицы

 Многочлен от матрицы

 Нормы матрицы

  Определители

 Определители

 Свойства определителей

 Миноры и алгебраические дополнения

 Критерий равенства нулю определителя

 Вычисление определителей

 Правило Крамера

  Линейные пространства

 Определение линейного пространства

 Пространство арифметических векторов Rn

 Линейная зависимость и линейная независимость системы векторов

 Свойства линейно зависимых и линейно независимых систем векторов

 Критерий линейной зависимости системы векторов линейного пространства

 Базис линейного пространства

 Размерность линейного пространства

 Координаты вектора линейного пространства в заданном базисе

 Преобразование координат вектора при изменении базиса

 Линейные подпространства

 Изоморфные линейные пространства

  Евклидовы пространства

 Определение евклидова пространства

 Свойства скалярного произведения

 Неравенство Коши-Буняковского

 Измерения в линейном пространстве

 Ортонормированные системы векторов

 Ортонормированный базис

 Скалярное произведение в координатах

 Полезные соотношения

 Ортогональные подпространства

 Ортогональные матрицы

  Линейные операторы

 Определение линейного оператора

 Действия с операторами

 Матрица линейного оператора

 Собственные значения и собственные векторы линейного оператора

 Свойства собственных векторов линейного оператора

 Характеристический многочлен

  Системы линейных уравнений

 Основные понятия

 Элементарные преобразования линейной системы

 Критерий совместности линейной системы

 Свойства решений линейной системы

 Метод Гаусса приведения системы к каноническому виду

 Нетривиальная совместность однородной линейной системы

 Фундаментальная система решений

 Структура общего решения однородной линейной системы

 Структура общего решения неоднородной линейной системы

  Квадратичные формы

  Билинейная форма

 Матрица билинейной формы

 Представление билинейной формы в паре базисов

  Квадратичная форма

 Матрица квадратичной формы

 Закон инерции квадратичных форм

  Знакоопределённые матрицы

 Положительно определённая матрица

 Свойства положительно определённых матриц

 Критерий положительной определённости матрицы

 Квадратный корень из матрицы

  Численные методы линейной алгебры

  Метод Гаусса решения системы линейных алгебраических уравнений

 Метод Гаусса с частичным выбором ведущего элемента

 Метод Гаусса с выбором ведущего элемента

  Итерационные методы решения системы линейных алгебраических уравнений

 Метод простых итераций

 Метод Зейделя

 Метод релаксации

 Обусловленность задачи решения системы линейных алгебраических уравнений

 Метод квадратного корня

 Метод прогонки

 QR-разложение матрицы

 Сингулярное разложение матрицы

 Степенной метод вычисления наибольшего собственного значения

 Метод обратных итераций

Рассмотрим матрицу A:

  

Вычеркнем из матрицы k строк с номерами i1, i2, ..., ik и k столбцов, с номерами j1, j2, ..., jk.

Элементы, расположенные на пересечении вычеркнутых строк, образуют определиитель,

который называется минором порядка k. Его обозначают Mk:

Минор, образованный оставшимися элементами называется дополнительным минором

минора Mk и обозначают Mk'.

Алгебраическим дополнением Ak минора Mk называется число, равное дополнительному

минору Mk', умноженному на (−1) в степени, равной сумме номеров вычеркнутыж строк и

столбцов:

Если вычеркнуты одна строка и один столбец, то соответствующие миноры и алгебраические

дополнения называют минорами и алгебраическими дополнениями элемента.

Определитель равен сумме произведений элементов любой строки или любого столбца на их

алгебраические дополнения:


Минор, расположенный в первых k строках и k столбцах, называется угловым минором.

Подробнее Примеры Решить свою задачу
© МЭИ (ТУ) 2007