СВОЙСТВА СОБСТВЕННЫХ ВЕКТОРОВ И СОБСТВЕННЫХ ЗНАЧЕНИЙ ЛИНЕЙНОГО ОПЕРАТОРА

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Линейная алгебра

  Матрицы и определители

  Матрицы

 Матрицы

 Линейные операции с матрицами

 Определитель матрицы

 Умножение матриц

 Обратная матрица

 Элементарные преобразования матрицы

 Ранг матрицы

 Многочлен от матрицы

 Нормы матрицы

  Определители

 Определители

 Свойства определителей

 Миноры и алгебраические дополнения

 Критерий равенства нулю определителя

 Вычисление определителей

 Правило Крамера

  Линейные пространства

 Определение линейного пространства

 Пространство арифметических векторов Rn

 Линейная зависимость и линейная независимость системы векторов

 Свойства линейно зависимых и линейно независимых систем векторов

 Критерий линейной зависимости системы векторов линейного пространства

 Базис линейного пространства

 Размерность линейного пространства

 Координаты вектора линейного пространства в заданном базисе

 Преобразование координат вектора при изменении базиса

 Линейные подпространства

 Изоморфные линейные пространства

  Евклидовы пространства

 Определение евклидова пространства

 Свойства скалярного произведения

 Неравенство Коши-Буняковского

 Измерения в линейном пространстве

 Ортонормированные системы векторов

 Ортонормированный базис

 Скалярное произведение в координатах

 Полезные соотношения

 Ортогональные подпространства

 Ортогональные матрицы

  Линейные операторы

 Определение линейного оператора

 Действия с операторами

 Матрица линейного оператора

 Собственные значения и собственные векторы линейного оператора

 Свойства собственных векторов линейного оператора

 Характеристический многочлен

  Системы линейных уравнений

 Основные понятия

 Элементарные преобразования линейной системы

 Критерий совместности линейной системы

 Свойства решений линейной системы

 Метод Гаусса приведения системы к каноническому виду

 Нетривиальная совместность однородной линейной системы

 Фундаментальная система решений

 Структура общего решения однородной линейной системы

 Структура общего решения неоднородной линейной системы

  Квадратичные формы

  Билинейная форма

 Матрица билинейной формы

 Представление билинейной формы в паре базисов

  Квадратичная форма

 Матрица квадратичной формы

 Закон инерции квадратичных форм

  Знакоопределённые матрицы

 Положительно определённая матрица

 Свойства положительно определённых матриц

 Критерий положительной определённости матрицы

 Квадратный корень из матрицы

  Численные методы линейной алгебры

  Метод Гаусса решения системы линейных алгебраических уравнений

 Метод Гаусса с частичным выбором ведущего элемента

 Метод Гаусса с выбором ведущего элемента

  Итерационные методы решения системы линейных алгебраических уравнений

 Метод простых итераций

 Метод Зейделя

 Метод релаксации

 Обусловленность задачи решения системы линейных алгебраических уравнений

 Метод квадратного корня

 Метод прогонки

 QR-разложение матрицы

 Сингулярное разложение матрицы

 Степенной метод вычисления наибольшего собственного значения

 Метод обратных итераций

Пусть A линейный оператор, действующий в n-мерном линейном пространстве X, λ iсобственное значение оператора A, а ei — соответствующий собственный вектор: A(ei ) = λ iei, ei0, eiX.

Или пусть A — матрица оператора A, или произвольная квадратноя матрица, λ iсобственное значение матрицы A, а ei — соответствующий собственный вектор: ei = λ iei,ei0, eiX.

— Если λ1, λ2, ..., λn — собственные значения матрицы A, то tr A = a11+ a22+...+ ann = λ1 + λ2 + ...+ λn.

— Если λ1, λ2, ..., λn — собственные значения матрицы A, то det A = λ1 · λ2 · ...· λn.

— Собственные значения λ i являются корнями характеристического уравнения det(A −λE) = 0.

— Оператор A (матрица A) имеет не более n различных собственных значений.

— Собственные значения матриц A и AT совпадают.

— Если матрица A обратима, то все её собственные значения отличны от нуля, λ i≠ 0; при этом собственными значениями обратной матрицы A− 1 являются числа (λ i)− 1, а соответствующие собственные векторы совпадают.

— Если число λ — собственное значение матрицы A, то собственным значением матрицы Ak является число λk , а соответствующие собственные векторы совпадают.

— Собственные значения подобных матриц A и C− 1·A·C совпадают. Здесь C — невырожденная матрица.

— Собственный вектор, отвечающий собственному значению λ i является ненулевым решением линейной однородной системы (A −λEx = 0, x0, x X.

— Собственные векторы, отвечающие различным собственным значениям, линейно независимы.

— Если линейный оператор A имеет n различных собственных значений, то соответствующие собственные векторы образуют базис пространства X, который называется собственным базисом линейного оператора.

— Если линейный оператор имеет собственный базис, то матрица оператора в собственном базисе имеет диагональный вид; диагональными элементами являются собственные значения оператора.

— Собственные векторы, отвечающие различным собственным значениям, ортогональны.

© МЭИ (ТУ) 2007