МАТРИЦЫ. Подробнее

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Линейная алгебра

  Матрицы и определители

  Матрицы

 Матрицы

 Линейные операции с матрицами

 Определитель матрицы

 Умножение матриц

 Обратная матрица

 Элементарные преобразования матрицы

 Ранг матрицы

 Многочлен от матрицы

 Нормы матрицы

  Определители

 Определители

 Свойства определителей

 Миноры и алгебраические дополнения

 Критерий равенства нулю определителя

 Вычисление определителей

 Правило Крамера

  Линейные пространства

 Определение линейного пространства

 Пространство арифметических векторов Rn

 Линейная зависимость и линейная независимость системы векторов

 Свойства линейно зависимых и линейно независимых систем векторов

 Критерий линейной зависимости системы векторов линейного пространства

 Базис линейного пространства

 Размерность линейного пространства

 Координаты вектора линейного пространства в заданном базисе

 Преобразование координат вектора при изменении базиса

 Линейные подпространства

 Изоморфные линейные пространства

  Евклидовы пространства

 Определение евклидова пространства

 Свойства скалярного произведения

 Неравенство Коши-Буняковского

 Измерения в линейном пространстве

 Ортонормированные системы векторов

 Ортонормированный базис

 Скалярное произведение в координатах

 Полезные соотношения

 Ортогональные подпространства

 Ортогональные матрицы

  Линейные операторы

 Определение линейного оператора

 Действия с операторами

 Матрица линейного оператора

 Собственные значения и собственные векторы линейного оператора

 Свойства собственных векторов линейного оператора

 Характеристический многочлен

  Системы линейных уравнений

 Основные понятия

 Элементарные преобразования линейной системы

 Критерий совместности линейной системы

 Свойства решений линейной системы

 Метод Гаусса приведения системы к каноническому виду

 Нетривиальная совместность однородной линейной системы

 Фундаментальная система решений

 Структура общего решения однородной линейной системы

 Структура общего решения неоднородной линейной системы

  Квадратичные формы

  Билинейная форма

 Матрица билинейной формы

 Представление билинейной формы в паре базисов

  Квадратичная форма

 Матрица квадратичной формы

 Закон инерции квадратичных форм

  Знакоопределённые матрицы

 Положительно определённая матрица

 Свойства положительно определённых матриц

 Критерий положительной определённости матрицы

 Квадратный корень из матрицы

  Численные методы линейной алгебры

  Метод Гаусса решения системы линейных алгебраических уравнений

 Метод Гаусса с частичным выбором ведущего элемента

 Метод Гаусса с выбором ведущего элемента

  Итерационные методы решения системы линейных алгебраических уравнений

 Метод простых итераций

 Метод Зейделя

 Метод релаксации

 Обусловленность задачи решения системы линейных алгебраических уравнений

 Метод квадратного корня

 Метод прогонки

 QR-разложение матрицы

 Сингулярное разложение матрицы

 Степенной метод вычисления наибольшего собственного значения

 Метод обратных итераций

     Элементы ai1, ai2, ..., ain образуют iстроку матрицы A, Ai = {ai1, ai2, ..., ain }.

     Элементы a1j, a2j, ..., amj образуют jстолбец матрицы A,

     

     Элементы a11, a22, ..., ann квадратной матрицы A называют диагональными элементами,

     они образуют главную диагональ {a11, a22, ..., ann}матрицы A.

Сумма диагональных элементов матрицы называется следом матрицы.

След матрицы: trA = a11+ a22+ ...+ ann.

      Квадратная матрица — матрица, у которой одинаковое число строк и столбцов:

      

      Верхняя треугольная матрицаквадратная матрица, у которой все элементы, расположенные ниже

      диагонали — нули:

      Нижняя треугольная матрица квадратная матрица, у которой все элементы, расположенные

      выше диагонали — нули:

  

      Матрица-столбец матрица размера 1:

      Матрица-строка — матрица размера 1×n:

      

       Диагональная матрица — квадратная матрица, у которой все внедиагональные элементы равны нулю:

      Единичная матрица — диагональная матрица, у которой все диагональные элементы равны единице:

       

      Нулевая матрица — матрица, все элементы которой равны нулю:

Ступенчатая матрица — матрица, имеющая m строк, у которой первые r диагональных элементов ненулевые, r m, а элементы, лежащие ниже диагонали и элементы последних mr строк равны нулю:

  Примеры  
© МЭИ (ТУ) 2007