СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. ОСНОВНЫЕ ПОНЯТИЯ

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Обыкновенные дифференциальные уравнения и системы

 Обыкновенные дифференциальные уравнения. Основные понятия

 Системы ОДУ. Основные понятия

 Связь ОДУ высших порядков и систем ОДУ

  ОДУ 1-го порядка

  ОДУ 1-го порядка. Методы решения

 Дифференциальные уравнения 1-го порядка. Основные понятия

 Уравнения с разделяющимися переменными

 Однородные уравнения 1-го порядка

 Уравнения, приводящиеся к однородным

 Линейные уравнения 1-го порядка

 Уравнения Бернулли

 Уравнения в полных дифференциалах

  ОДУ 1-го порядка. Поведение решений

 Теорема существования и единственности решения задачи Коши

 Уравнения 1-го порядка. Поле направлений

 Автономные уравнения 1-го порядка

 Устойчивость решений ОДУ 1-го порядка

 Асимптотическая устойчивость решений ОДУ 1-го порядка

  Приближённые методы решения

 Метод изоклин

 Метод Эйлера

  ОДУ высших порядков

  ОДУ высших порядков. Понижение порядка

 Понижение порядка ОДУ. Введение

 Уравнения, не содержащие независимой переменной

 Уравнения, не содержащие искомой функции

 Уравнения с однородной правой частью

  Линейные ОДУ n-го порядка

 Линейные ОДУ n-го порядка. Введение

 Свойства решений линейного уравнения. Принцип суперпозиции

 Существование и единственность решения задачи Коши

 Линейные уравнения второго порядка. Гармонические колебания

 Линейные уравнения 2-го порядка. Ангармонические колебания

 Линейные уравнения 2-го порядка. Уравнение Ньютона

  Линейная зависимость и линейная независимость системы функций

 Линейная зависимость и линейная независимость системы функций

 Определитель Вронского

 Исследование линейной независимости системы функций

 Линейная независимость решений линейного дифференциального уравнения

  Структура решения линейного ОДУ n-го порядка

 Фундаментальная система решений однородного линейного дифференциального уравнения

 Структура общего решения линейного однородного уравнения

 Структура общего решения линейного неоднородного уравнения

 Метод вариации произвольных постоянных отыскания частного решения

  Линейные ОДУ с постоянными коэффициентами

 Решение однородного уравнения с постоянными коэффициентами

 Метод подбора построения частного решания неоднородного уравнения

 Уравнение Эйлера

  Системы дифференциальных уравнений

 Системы обыкновенных дифференциальных уравнений. Основные понятия

 Фазовое пространство Фазовые траектории

 Существование и единственность решения задачи Коши

 Интегрирование систем дифференциальных уравнений методом исключения

  Линейные системы OДУ. Структура решения

 Линейные системы ОДУ. Основные понятия

 Фундаментальная матрица решений однородной линейной системы дифференциальных уравнений

 Структура общего решения однородной линейной системы дифференциальных уравнений

 Структура общего решения неоднородной линейной системы дифференциальных уравнений

 Построение фундаментальной матрицы решений однородной линейной системы дифференциальных уравнений с постоянными коэффициентами методом Эйлера

  Системы ОДУ. Поведение решений

 Устойчивость решений систем дифференциальных уравнений

 Устойчивость и асимптотическая устойчивость по Ляпунову

 Устойчивость положения равновесия линейных систем ОДУ

 Устойчивость точек покоя нелинейных систем по линейному приближению

 Неустойчивость по линейному приближению точек покоя нелинейных систем

  Автономные системы дифференциальных уравнений

 Автономные системы. Основные понятия

 Свойства фазовых траекторий

 Фазовая плоскость, фазовые кривые, фазовый портрет автономной системы 2-го порядка

 Векторное поле автономной системы 2-го порядка

 Точки покоя линейной автономной системы 2-го порядка с постоянными коэффициентами

  Численные методы решения ОДУ

 Метод Эйлера

 Методы Рунге-Кутты

 Многошаговые методы

 Жёсткие системы. Методы численного решения

Система обыкновенных дифференциальных уравнений n –го порядка

может быть записана в канонической форме:

 

в нормальной форме

или в векторной форме

Здесь

При описании систем дифференциальных уравнений удобнее пользоваться векторной формой записи.

 

Решением системы обыкновенных дифференциальных уравнений Y ' = F(x,Y) называется вектор–функция Y(x) = Φ(x) , которая определена и непрерывно дифференцируема на промежутке (a; b) и удовлетворяет системе Y ' = F(x,Y) на этом промежутке.

Задачей Коши для системы обыкновенных дифференциальных уравнений называется следующая задача: найти решение Y(x) системы Y ' = F(x,Y) такое, что Y(x0) = Y0 . Здесь

Частным решением системы дифференциальных уравнений называется решение какой–нибудь ее задачи Коши.

Вектор–функция Y = Y(x, C) = Y(x, C1,C2, … , Cn) , зависящая от n произвольных постоянных C1,C2, … , Cn называется общим решением системы дифференциальных уравнений на [a; b] , если:

— при любых допустимых значениях постоянных C1,C2, … , Cn функция Y(x, C) является решением системы на [a;b] ;

какова бы ни была начальная точка (x0, Y0) из области определения правой части системы, существуют такие значения C*1,C*2, … , C*n постоянных C1, C2, … , Cn , что функция

Y(x, C*1,C*2, … , C*n ) является решением задачи Коши Y(x0) = Y0 .

Пусть Y(x) = Φ(x) — решение системы, определенное на [a, b] . Тогда множество точек {Φ(x)}, x ∈ [a, b] — кривая в пространстве Rn .

Эту кривую называют фазовой траекторией или просто траекторией системы, а пространство Rn , в котором расположены фазовые траектории, фазовым пространством системы.

Пусть Y(x) = Φ(x) — решение системы Y ' = F(x,Y) , определенное на [a,b] .

Интегральная кривая системы определяется уравнением Y = Φ(x) и изображается в (n + 1)–мерном пространстве Rn+1

Фазовая траектория — проекция интегральной кривой на пространство Rn.

  Примеры  
© МЭИ (ТУ) 2007