ОПРЕДЕЛИТЕЛЬ ВРОНСКОГО
|
||||
|
||||
Определителем Вронского W(x; y1(x), y2(x), ..., yn(x)) называется определитель, первая строка которого образована функциями y1(x), y2(x), ..., yn(x) из Cn-1[a, b] , а последующие строки образованы производными от функций предыдущей строки:
Справедливо следующее необходимое условие линейной зависимости функций. Если функции y1(x), y2(x), ..., yn(x) линейно зависимы на отрезке [a;b], то их определитель Вронского тождественно равен нулю на этом отрезке: W(x; y1(x), y2(x), ..., yn(x)) ≡ 0 на [a;b].
Важно понимать, что обратное утверждение неверно. Определитель Вронского линейно независимой системы функций может быть тождественно равен нулю.
Однако, если определитель Вронского системы функций на некотором отрезке отличен от тождественного нуля, то система функций линейно независима на этом отрезке.
|
© МЭИ (ТУ) 2007 |