УРАВНЕНИЕ, НЕ СОДЕРЖАЩЕЕ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ
|
||||
|
||||
F(y, y', ..., y(n)) = 0
Если в результате каких–либо преобразований порядок n уравнения F(x, y, y ',..., y(n) ) = 0 может быть понижен, то говорят, что уравнение допускает понижение порядка. К уравнениям, допускающим понижение порядка, относятся уравнения, не содержащие независимой переменной — уравнения вида F(y, y', ..., y(n)) = 0. Порядок уравнения можно понизить заменив y ' = p(y). После подстановки получим дифференциальное уравнение относительно функции p = p(y) , в котором порядок старшей производной от p(y) будет на единицу меньше, чем порядок старшей производной от y(x) в исходном уравнении.
|
© МЭИ (ТУ) 2007 |