ЛИНЕЙНЫЕ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. ОСНОВНЫЕ ПОНЯТИЯ
|
||||
|
||||
Система обыкновенных дифференциальных уравнений вида где aij(x) и bi (x) — известные, а yj (x) — неизвестные функции, (i = 1,2, … ,n, j = 1,2, … , n) называется линейной системой дифференциальных уравнений.
При описании линейных систем дифференциальных уравнений удобнее пользоваться векторной (матричной) формой записи. Обозначим Тогда линейная система дифференциальных уравнений в векторной (матричной) форме записывается в виде Y' = A(x)Y + b(x) или, что то же самое, в виде Матрица A называется матрицей системы, а вектор–функция b(x) — неоднородностью системы. Система Y' = A(x)Y + b(x) называется неоднородной линейной системой дифференциальных уравнений, а система Y' = A(x)Y— однородной линейной системой.
Справедлива следующая теорема существования и единственности решения задачи Коши для линейной системы дифференциальных уравнений. Если A(x) и b(x) непрерывны на отрезке [a, b] , то какова бы ни была начальная точка (x0, Y0) из Rn + 1, задача Коши Y' = A(x)Y + b(x), Y(x0) = Y0, имеет единственное на [a,b] решение Y = Y(x) .
Важно отметить, что для линейной системы дифференциальных уравнений разрешимость задачи Коши глобальная: решение существует всюду, где непрерывны коэффициенты и неоднородность системы.
|
© МЭИ (ТУ) 2007 |