ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСМОСТЬ СИСТЕМЫ ФУНКЦИЙ. Подробнее

 

ОГЛАВЛЕНИЕ ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ ПОЛЕЗНЫЕ ССЫЛКИ

Высшая математика

  Обыкновенные дифференциальные уравнения и системы

 Обыкновенные дифференциальные уравнения. Основные понятия

 Системы ОДУ. Основные понятия

 Связь ОДУ высших порядков и систем ОДУ

  ОДУ 1-го порядка

  ОДУ высших порядков

  ОДУ высших порядков. Понижение порядка

  Линейные ОДУ n-го порядка

  Линейная зависимость и линейная независимость системы функций

 Линейная зависимость и линейная независимость системы функций

 Определитель Вронского

 Исследование линейной независимости системы функций

 Линейная независимость решений линейного дифференциального уравнения

  Структура решения линейного ОДУ n-го порядка

  Линейные ОДУ с постоянными коэффициентами

  Системы дифференциальных уравнений

  Численные методы решения ОДУ

Справедливо следующее утверждение.

Функции y1(x), y2(x), ..., yn(x) линейно зависимы на отрезке [a;b] тогда и только тогда, когда хотя бы одна из них является на этом отрезке линейной комбинацией других .

Очевидны следующие утверждения.

Если среди функций y1(x), y2(x), ..., yn(x) есть нулевая функция, то функции линейно зависимы.

Если функции y1(x), y2(x), ..., yk(x) линейно зависимы, то при любых yk + 1(x), yk + 2(x), ..., yn (x) функции y1(x), y2(x), ..., yk(x), yk + 1(x), ..., yn(x) также линейно зависимы.

Если функции y1(x), y2(x), ..., yn(x) линейно зависимы на отрезке [a;b] , то они линейно зависимы и на любом отрезке, лежащем внутри [a;b] .

Если функции y1(x), y2(x), ..., yn(x) линейно независимы на [a;b] , то они линейно независимы и на любом отрезке, содержащем отрезок [а;b] (если, они определены на этом отрезке).

Вектор–функции Y1(x), Y2(x), ..., Yn(x),

называются линейно зависимыми на отрезке [a;b] , если существуют постоянные α1, α2, ..., αn , не равные нулю одновременно и такие, что

α1 Y1(x) + α2 Y2(x) + ... + αn Yn(x) = 0

для всех x из отрезка [a; b].

В противном случае функции Y1(x), Y2(x), ..., Yn(x) называются линейно независимыми.

© МЭИ (ТУ) 2007